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S U M M A R Y  
This paper introduces a new, efficient method for approximating broad-band wave 
propagation in complicated velocity structures. The complete justification and 
development of this method are not presented, but it is shown that this technique, 
despite its simplicity, reproduces many expected broad-band, wave-propagation 
phenomena. 

This method, named here the wavelength-smoothing (WS) technique, is based on 
the computation of wave refraction using Huygens' principle and a frequency- 
dependent velocity function defined as the wave velocity smoothed over a 
wavelength across the wavefront. The WS method reduces to geometrical ray theory 
at high frequency, but also produces broad-band wave phenomena such as 
dispersion, phase shifting upon reflection and wavelength-dependent scattering. 
Transmitted refractions, wide-angle reflections and head waves are produced at 
discontinuities without requiring the matching of boundary conditions. The WS 
method is subject to some of the limitations of geometrical ray methods including 
amplitude instability at caustics and incomplete modelling of diffractions near critical 
regions. Also, wavetype conversions and pre-critical reflections are not produced at 
internal discontinuities. 

The WS technique is an application of physical principles but is intuitively based 
and not formally derived from basic equations. As a consequence, the completeness 
and accuracy of the method may be less than that of other techniques. Although a 
number of tests and comparisons of the method have given satisfactory results, 
additional investigations to provide further justification and verification are now 
required. 

The WS algorithm requires much less computer time and memory than numerical 
techniques and may be applied in practice to complicated, 3-D velocity models. A 
comparison between the WS method and a boundary integral method applied to a 
2-D, rough interface model is presented in this paper. 

Key words: bodywaves, broad-band waveforms, complex structures, synthetic 
seismograms, ray tracing. 

1 INTRODUCTION 

Knowledge of the seismic-velocity structure of the earth's 
crlist and upper mantle, and the description of seismic-wave 
propagation through these structures, is of fundamental 
importance for the understanding of many geologic 
processes. For many years, the modelling of wave 
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propagation in the earth was limited by the state of 
observation, theory and computational resources to laterally 
homogeneous structures. Unfortunately, as geologists and 
seismologists have long recognized, these simple models are 
inadequate for fully describing realistic crustal and upper 
mantle structures and for reproducing many observed 
seismic waveforms. The study of broad-band seismograms in 
realistic earth models requires methods for modelling 
broad-band wave propagation from a localized source within 
an arbitrary, 3-D velocity structure. An optimal method 
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would apply complete waveform physics to  complicated 
velocity models while making efficient use of computational 
resources . 

However, most existing methods for efficiently generating 
synthetic seismograms produce either approximate, condi- 
tional results in complex models or more exact results in 
highly symmetric models (Aki & Richards 1980). Techn- 
iques representative of these two extremes include ray 
methods and full-waveform methods such as generalized 
ray, reflectivity and modal summation. Ray methods 
produce traveltimes, amplitudes and other features of 
wavefields in realistic models, but are valid only where the 
changes in the elastic moduli and density are negligible 
within one wavelength (Fuchs 1968, Cerveny, Molotkov & 
PSenEik 1977). This restriction limits the ray methods to the 
study of high-frequency wavefields. Ray methods are also 
difficult to apply to the analysis of complicated velocity 
structures since these methods are highly sensitive to  
small-scale features of the model (Cerveny 1985a). 

Full-waveform methods are efficient and accurate because 
they make extensive use of analytic solutions to  basic 
equations. Unlike most ray-based techniques, these methods 
can produce broad-band synthetics; also, they require much 
less computer time and memory than numerical methods. 
However, full-waveform methods are valid only for layered 
models and, with certain extensions, for models with planar, 
non-parallel interfaces (e.g. Hong & Helmberger 1978; 
Richards, Witte & Ekstrom 1991) and so cannot be applied 
to arbitrary velocity structures. 

The finite-difference and finite-element methods and 
other numerical techniques (Aki & Richards 1980; Bullen & 
Bolt 1985) can also in principle model both broad-band 
wave phenomena and 3-D structures. However, practical, 
routine application of these methods is limited by 
computational considerations (Spudich & Archuleta 1987; 
Frankel 1989). Currently, 3-D applications are restricted to  
small study volumes relative to  wavelength and require the 
most powerful computers (e.g. Igel et al. 1991; Frankel & 
Vidale 1992). 

All of these methods and most other wave-propagation 
techniques involve derivations from the elasto-dynamic 
equation of motion or the scalar wave equation. Typically, 
these derivations are advanced by restricting the model 
parametrization, by limiting the applicable wave types or 
wave frequencies, or by neglecting selected terms. The 
resulting methods are well defined and can be numerically 
accurate, but are only valid for a limited range of wave 
phenomena and model geometries. 

As an example of the successful application of these 
methods consider the seismological inference of radial 
velocity structure within the whole earth (Dziewonski & 
Anderson 1981; Bullen & Bolt 1985). In this case, full 
waveform and ray methods developed for a spherical 
geometry could be used for inversion with good resolution 
because the ‘true’ earth structure is apparently close to  
spherical symmetry and because the typical path lengths of 
the observed waves are large relative to  their wavelengths. 

However, few of the presently available methods for 
approximating wave propagation are valid and practical in 
complicated, 3-D models representative of the crust and 
upper mantle of the earth. 

To address this shortcoming, an approximate method for 

modelling of broad-band wave propagation in heteroge- 
neous velocity structures is introduced in this paper. This 
technique, named the wavelength-smoothing (WS) method, 
has similarities to both ray-tracing and full-waveform 
techniques. Because the WS method responds directly to  
velocity variations, it is neither a scalar, nor an elastic 
formulation, but instead is ‘kinematic’. Examples of the 
application of the WS method have been presented 
previously (Lomax & Bolt 1992), however, this paper and 
Lomax (1992) form the first presentation and preliminary 
validation of the methodology. 

2 T H E  WAVELENGTH-SMOOTHING 
METHOD 

The WS method combines Huygens’ principle and 
wavelength-dependent velocity smoothing to approximate 
broad-band wave propagation through models with compli- 
cated velocity distributions. A broad-band wavefield is 
constructed by summing the results of independent, 
time-domain propagation of narrow-band ‘wavefields’ at 
many centre frequencies. In the following discussion, terms 
such as waue path, wavefront and wave location refer to  
these narrow-band ‘wavefields’ and not to  the final, 
broad-band wavefield. 

2.1 Basic assumptions and methodology 

The WS method is based on two principal assumptions. 
First, many features of broad-band wave propagation can be 
modelled by using Huygens’ principle to track the motion of 
narrow-band wavefronts at a number of centre frequencies; 
the narrow-band wavefronts are defined as surfaces of 
constant phase or traveltime in a narrow-band ‘wavefield’. 
The second assumption is that the velocity of propagation of 
body waves at a particular frequency and location can be 
approximated by a wavelength-averaged velocity, given by a 
centrally weighted average of the medium velocity across 
the narrow-band wavefront, with the width of the weighting 
function varying in proportion to wavelength (Fig. 1). 

Both of these assumptions become strictly valid as infinite 
frequency is approached because, in this limit, Huygens’ 
principle is equivalent to  geometrical ray theory (e.g. Officer 
1958) and the wavelength-averaged velocity converges to  the 
local medium velocity. However, the validity of either 
assumption at finite frequency does not follow immediately 
from wave physics. In this work these assumptions are 
justified with theoretical argument and by comparison of 
results of the WS method with the results of basic wave 
physics and other wave-propagation techniques. 

The motion through time of the narrow-band wavefronts 
determines wave paths, which are similar t o  the rays of ray 
theory, but are frequency dependent. The wavelength- 
dependent smoothing of the medium in the WS algorithm 
leads to increased stability of wave paths relative to 
high-frequency ray methods and produces a sensitivity of the 
waves to  larger velocity anomalies within about a 
wavelength of the wave path (Fig. 2 ) .  

After many sets of wave paths a t  a range of centre 
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Figure 1. Wave path, wavefront and wavelength-averaged vclocity 
weighting function for three time steps t , ,  t ,  and I , .  The 
perpendicular distance from each point of the wavefront to the 
corresponding weighting function shows the relative weighting along 
the wavefront. A centrally peaked weighting function is required so 
that a region A of anomalous velocity close to the wave path has a 
stronger influence on the change in position and orientation of the 
wavefront and wave path at each time increment than a region B far 
from the wave path. The approximate wavelength A is indicated 
with a sinusoid. 

frequencies have been generated with the WS technique, 
broad-band waveforms are produced by a summation of the 
contributions of all wave types at all frequencies arriving at  
a given receiver location. In a manner similar t o  the ray 
method, the traveltime and amplitude of a given wave type 
are estimated from the traveltime and geometrical spreading 
of adjacent wave paths of the same wave type passing near 
the receiver location. 

For simplicity, in the current implementation of the WS 
method, the effective narrow-band wavefront a t  any time is 
approximated by an instantaneous wavefront, a straight-line 
segment (2-D) or a plane (3-D) normal to  the wave-path 
direction passing through the wave-path locution, the 
position in space of the wave path at any given time. This 
approximation requires that the radius of curvature of the 
wavefront is large relative to  a wavelength; this is only true 
in general if the medium is smoothly varying relative to  a 
wavelength. However, with the WS method, the radius of 
curvature of the narrow-band wavefront will be large uffer 
the wavelength-averaged velocity smoothing is applied, 
except in regions within about a wavelength of sources and 
focusing points. 

Figure 2. Cartoons showing signiticant difl'erenccs hetwccn thc 
wavelength smoothing and ray methods. (Top) A ray-theory ray is 
unperturbed in passing near a velocity anomaly (stippled region), 
while a WS wave path for wavelength A will be deflected by the 
anomaly if the anomalous region is large relative to A and lies within 
about a wavelength of the wave path. The wavelength velocity 
averaging along the wavefront in the WS method causes 
information from the medium away from the wave path to affect the 
wave path. (Bottom) A ray-theory ray can be strongly scattered by 
a small velocity anomaly (stippled region), while a WS wave path 
for wavelength A will not he deflected by an anomalous region 
which is sniall relative to A. The wavelength velocity averaging in 
the WS method smoothes out the effect of small velocity variations. 

2.2 Justification of wavelength-averaged velocity 

The WS method is based on explicit smoothing o f  the 
medium to produce the wavelength-averaged velocity. It is 
this wavelength-dependent smoothing that makes the WS 
method a broad-band wave-propagation technique, and 
distinguishes it from the high-frequency ray methods. 

A formal demonstration of the validity of the 
wavelength-averaged velocity under generally defined 
conditions for use in a wave-propagation method is not 
currently available. In the following it is argued that the use 
of wavelength-dependent velocity smoothing in the present 
seismological context is justified because this form of 
smoothing is implicit in the formulation and application of 
most seismic-wave propagation techniques, and because 
some effective smoothing of earth properties is predicted by 
scattering theory. 

Most methods for synthesizing seismic-wave propagation 
require the use of smoothly varying functions to represent 



316 A. Lomux 

wave velocity or other material parameters (Aki & Richards 
1980; Bullen & Bolt 1985). However, the variation of 
material properties in the earth is neither smooth nor 
continuous: it is rough at most scales; the use of a 
continuous velocity function indicates an implicit assumption 
that the  propagation of the wavefield performs some 
averaging or effective smoothing of material properties. For 
example, ray theory is strictly valid only if the wavelength is 
much smaller than all other characteristic lengths in the 
problem (cervenf et a[. 1977). In practice, ray methods are 
often employed to interpret observations from finite- 
frequency waves that have passed through complicated 
velocity structures that are likely to  contain features much 
smaller than the wavelength. 

Some form of wavelength-dependent averaging in the 
earth is also indicated by the analysis of surface waves and 
normal modes using eigenvibrations. Eigenfrequencies and 
eigenvibrations can be calculated in a flat layer or spherical 
earth by integration of the differential equations for the 
wave motion from some depth d to  the surface (Aki & 
Richards 1980). Bolt & Dorman (1961) show that this 
numerical integration can be performed accurately starting 
at some cut-off depth d = &A. They find that values of e of 
1.5 to 2.1 are adequate for Rayleigh waves in a spherical 
earth, implying that an integration (or averaging) of earth 
properties over about one to two wavelengths accounts for 
the greater part of the wave motion. 

An apparent smoothing of material properties by the 
wavefield is also supported by the results of scattering 
studies (see Aki & Richards 1980, Chapter 13). The 
effectiveness of this smoothing is found to  be related to  the 
ratio of the characteristic size of elastic inhomogeneities to  
the wavelength and the ratio of path length to  wavelength. 
When a medium has a characteristic size of inhomogeneity d 
that is much less than the wavelength A ,  it can be replaced 
with some equivalent, homogeneous medium. When the 
inhomogeneity size d is much greater than a wavelength A, 
the medium is effectively piece wise smooth, and ray 
methods are applicable. The most difficult case is when 
inhomogeneity size is comparable to  the wavelength 
d = O(A). In this case diffraction effects are strongest and 
classical analytic or ray methods may not be valid. 

The result of apparent smoothing in the case of small 
inhomogeneity size leads t o  the use of wavelength 
smoothing in the WS method. In an attempt to  produce 
useful, approximate results for all inhomogeneity sizes, 
including the most difficult case of d = O(A), the smoothing 
of the velocity structure is explicitly coupled to  wavelength. 
The WS method is applicable to large- or small- 
inhomogeneity scale relative to  the wavelength because in 
the former case it is the same as ray theory and in the latter 
it responds to a smooth, averaged velocity structure. 
Consequently, model roughness is not restricted in the 
application of the WS method and realistic, complicated 
velocity models can be explored. This is not to  say, 
however, that the accuracy of the WS method is 
independent of model complexity. 

2.2.1 Geometry of wavelength-velocity averaging 

In the WS method the wavelength-dependent velocity for a 
particular wave path and time is determined by some 

weighted average across the wavefront of the wave velocity 
in the medium. The weighting function has a maximum at  
the wave-path location and decays smoothly to zero far from 
the wave path (Fig. 1). A weighting function with a 
maximum at the wave-path location, and a smooth decay t o  
zero away from the wave path, is necessary to  suppress the 
effect of velocity anomalies far from the wave path and is 
also required to maintain compatibility with ray theory at 
frequency f +m. For simplicity, the width of smoothing is 
taken independent of distance from the source and receiver. 

The wavelength averaging is taken over velocity v instead 
of another parameter, such as slowness l /v,  because it is the 
wave velocity directly that is used to  propagate wavefronts 
in Huygens’ principle. Also, in preliminary tests of the WS 
method at a plane discontinuity, the direct averaging of 
velocity v resulted in wave paths that more closely matched 
the predictions of basic wave physics than did, for example, 
averaging over l / v .  However, in the WS method Huygens’ 
principle is formally applied only after the wavelength 
smoothing, and there is some uncertainty as to  the optimum 
form of the smoothing function. Consequently it may be  
found with further development of the method that a 
parameter other than v is more appropriate for the 
smoothing. 

The velocity averaging is taken across the wavefront only 
and not in some volume around the wave-path location, 
because this is compatible with Huygens’ principle, which 
makes use of material properties only on the wavefront. In 
addition, the propagation of the waves through time leads to  
the consideration of material properties in the direction 
along the wave paths, perpendicular to  the surface of the 
wavefronts. 

The consideration of material properties only along the 
wavefront surface at each time increment is also consistent 
with the Helmholtz-Kirchhoff integral theorem (Elmore & 
Heald 1985), which states that the wavefield at  an 
observation point P can be completely determined by an 
integration of the field over a surface S that surrounds P. In 
the WS method the instantaneous wavefront a t  a particular 
time forms the analogue to  the surface S while the 
wave-path location at  a slightly later time is identified with 
the observation point P ;  the use of the wavelength-averaged 
velocity across the wavefront is analogous to  the integration 
of the field on S.  Consideration of the Helmholtz-Kirchhoff 
integral theorem in this context also leads to  a weak 
justification for the general form of the weighting function 
(Lomax 1992). 

2.2.2 Implementation of wavelength -averaged velocity 

In a 2-D geometry the wavelength-averaged velocity V at  
point x ,  and period T is given by 

where 8 is distance along the wavefront away from x, 
expressed in wavelengths, c(x)  is the local medium velocity 
at point x and w ( 6 )  is a weighting function. x(8, T) is 
position along the instantaneous wavefront given by the 
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Figure 3. Wavelength-smoothing wave path, instantaneous wave- 
front, global coordinates {x, y ) ,  ray location x,, ray centred 
coordinates {s, n } ,  and schematic weighting function ~ ( 0 ) .  

-2 - ?  0 ? 2 
Distance from Wavepath (wavelengths)  
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recursive relation 

T ”  
x(0, T ) = x ,  + ~ b  c [ x ( 8 ’ ,  T ) ] d O ‘ f i ( T ) ,  (2) 

where ii is the unit normal at point x, to  the wave path for 
period T (Fig. 3). Note from (2) that dx/dO is directly 
proportional to local medium velocity c ( x )  and period T.  
Consequently, the effective width of the velocity smoothing 
function is a function of the wave period and of the wave 
velocity at all points along the instantaneous wavefront. This 
means that a region of anomalous velocity near, but not 
necessarily on the wave path, can affect the width of velocity 
smoothing, which will affect the future wave-path trajectory. 

In the present work only a weighting function w ( 8 )  with 
the form of a Gaussian bell is discussed in detail. This 
Gaussian bell weighting curve is given by 

w,(o) = exp[-41n 2(0/a)*], (3) 

where a specifies the half-width of the Gaussian bell in 
wavelengths. For large 181 the Gaussian function w g ( 0 )  
asymptotically approaches 0. 

In Lomax (1992) two additional weighting functions are 
examined: a cosine bell and a function based on a derivation 
from the Helmholtz-Kirchhoff integral theorem and 
referred to as the ‘modified Fresnel’ function (Fig. 4). The 
amplitude of all of these functions has a maximum at  8 = 0 
(location x,) and decreases away from x, in each direction 
along the wavefront. The Gaussian bell is selected here as a 
preferred weighting function, but there is some evidence 
that another functional form may produce better results 
(Lomax 1992). A more thorough examination of the form of 
the weighting function is left for future work. 

2.2.3 Discrete represeqtation of equations 

For application on digital computers, the continuous integral 
along the instantaneous wavefront for the wavelength- 
averaged velocity (1) is replaced by a sum over a finite set of 
2N+ 1 control points spaced in proportion to  local 
wavelength along the instantaneous wavefront (Fig. 5): 

N 

(4) 
c w, 

n = - N  

The location of the control points is given by a discrete 
version of expression (2): 

$1 = x v ,  ( 5 )  

c(xn-Ji i ;  n = 1, 2, . . . , N ,  om,, T 
[xn-i +w 

c ( ~ , + ~ ) f i ;  n = -1, -2 , .  . . , - N ,  

where Om,,, is a truncation parameter that specifies the 
greatest distance in wavelengths along the wavefront at 
which smoothing is applied. The locations of the control 
points x,, are estimated in both directions starting from the 
location x,. The distance along the wavefront in 
wavelengths, On,  corresponding to  location x,, is 

(7) 
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Figure 5. Wavelength-dependent velocity-smoothing calculation for 
point x,. Centrally weighted smoothing is applied across an 
instantaneous wavefront defined by the normal to the wave path. 

and the discrete form of the Gaussian weight function (3) is 

(w,), = exp[-4In ~(O,/(Y)’]. (8) 

2.3 Movement of wave paths 

The change in position of the wavefront location x,, along 
the wave path is approximated by 

Ax,, = Y p  A&, (9) 

where Vp is the wavelength averaged velocity at xp, At is the 
time step and ii is the unit vector along the propagation 
direction (Fig. 3). 

The  change in the direction of .G is directly related to  the 
change in direction of the instantaneous wavefront since ii is 
always normal to  the front by definition. The change in 
direction of the front is approximated by the difference in 
movement between the first control points on each side of 
the wave location +, = x,, during one time step (Fig. 6): 

or 

Eqs (9) and (11) express the approximation to Huygens’ 
principle used to  track the wave propagation in the WS 
method. 

instantaneous 

wavelength-dependent 
i weigthing function 

Figure 6. Wavelength-smoothing wave-path-movement calculation 
An approximation to Huygens’ principle IS applied by considering 
the motion of a point x,, on the wave path and the two closest 
control points x , dnd x, under the influence of the smoothed 
velocity V. This calculation give\ the trdnslation V,,At and bending 
A3 of the wave path At infinite frequency or if no velocity 
smoothing were applied, this algorithm reduces to the ray method. 

In the limit of (xl  - x- I -+ 0 and At -+ 0 (11) becomes 

dii 
dt 
- = -(VV * ii)ii, 

which states that the change in direction of the wave path is 
proportional to the gradient of the wavelength-averaged 
velocity in the direction normal to the wave path. 

Equation (12) and the differential form of (9) for the 
change in wave location along the wave path, 

dx 
d t  
_-  - R, 

are shown in Lomax (1992) to  be equivalent to  the 
differential equations for rays in geometrical ray theory with 
the local-medium velocity c(x) replaced by the wavelength- 
averaged velocity Y(x). In addition, putting f- co produces 
?(x)-+c(x) (cf. eqs 1 and 2 with T+O),  in which case 
expressions (12) and (13) become identical to  the differential 
equations for ray theory. This property shows that in the 
limit of infinite frequency the WS method is the same as the 
geometrical ray method. 

2.4 Free-surface reflections and conversions 

The implementation of the WS method discussed in this 
work includes reflection and conversion of wave paths a t  the 
free surface but not at internal boundaries. 
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To include the effect of the free surface, the equations for 
plane-wave reflection and conversion (Savarensky 1975; Aki 
& Richards 1980) are evaluated whenever the wave location 
xp reaches the surface z = 0. P to  P, SV to  SV and SH to SH 
surface reflections are performed with a simple reversal of 
the sign of the z component of the wave-path direction 
vector $. P t o  SV and SV t o  P conversions are  applied by 
creating a new wave path, setting its direction using Snell’s 
law and determining its amplitude using the plane-wave 
coefficients. The velocity values at instantaneous wavefront 
locations that lie above the free surface are determined from 
the velocity at the image locations obtained through 
reflection at the free surface. 

Inhomogeneous P waves travelling along the surface can 
be created for SV to P conversions beyond the critical angle. 
Unfortunately, the numerical propagation of these in- 
homogeneous P waves in the present implementation of the 
WS algorithm is relatively time consuming because they 
travel along the surface and must be treated as continuous 
arrivals along the surface in contrast to  the discrete arrivals 
of body waves. 

When reflections and conversions at the free surface are 
included, the WS algorithm produces body waves and wave 
types that can be constructed with sums of body waves such 
as Love and inhomogeneous P waves. However, the WS 
method does not produce waves such as Rayleigh and 
Stoneley boundary waves, which d o  not have a duality with 
body waves. 

2.5 Construction of synthetic seismograms 

To generate synthetic seismograms, the wavelength- 
smoothing algorithm is used to  trace many wave paths 
originating at different take-off angles from a point source. 
This set of wave paths is referred to  as a wave-path suite. A 
different wave-path suite is generated for each of a range of 
centre frequencies f, that cover the bandwidth of interest. 
After the wave-path suites for all frequencies have been 
calculated, wave arrivals at a given station are found by 
inspecting the surface arrivals of wave paths that were 
adjacent a t  the source to  see if they bracket a region on the 
surface containing the station location. When such arrivals 
are found, an arrival time at  the station is interpolated from 
the timing of the adjacent arrivals, and the amplitude is set 
in proportion to the geometrical spreading of the adjacent 
wave paths. The geometrical spreading is estimated from the 
ratio of the area of the surface between and normal to the 
wave paths of the adjacent arrivals to the area, defined by 
the same wave paths on the unit circle around the source. 
This spreading estimate is similar t o  methods used for 
estimating geometrical spreading in ray theory (Cervenf et 
al. 1977; Aki & Richards 1980) and is identical to an 
approximate method outlined in Cervenf el al. (1977, 
Section 3.5). 

The response at a given station for each arrival at centre 
frequency f, is formed by summing into a time series s,,. At 
the appropriate arrival time, a narrow-band filtered delta 
function 6, is scaled to the arrival amplitude, 

I 

where aj,, is the amplitude and tj ,  the arrival time of the j t h  
arrival. The narrow-band delta function a,, is formed by 
bandpass filtering a delta function between f, - Af and 
f, + Af where Af - (f, -f,-,). The waveform examples 
presented in this work were constructed using non-causal 
filters, but causal filters may be more appropriate for some 
applications. 

A broad-band time series s ( t )  is constructed by summing 
together the narrow-band time series s, from each modelled 
frequency, 

The time series s ( t )  approximates the response at a given 
station to an impulsive source within the frequency band 
used for the wave-path suite calculations. 

This band-limited, impulse response-time series can be 
convolved with a source-time function and a source- 
radiation pattern to produce a synthetic seismogram. The 
amplitude of the final synthetics is scaled to a particular 
scalar moment by insuring that the integral of the 
convolution of the band-limited, impulse response and the 
source-time function is equal to this moment. 

The final time series will approximate the response to  the 
P, SV or SH radiation from the source when the appropriate 
P or S model velocities are used for the wave-path 
calculations and the appropriate P ,  SV o r  S H  radiation 
patterns are used for the construction o f  synthetics. 
However, since the implementation of the WS method 
discussed in this work does not include pre-critical 
reflections and wave-type conversions at internal discon- 
tinuities, the final time series will not be a complete 
representation of the wavefield. 

In contrast to  the velocity smoothing of the wave-path 
propagation algorithm, no form of wavelength-dependent 
spatial smoothing is employed in determining station arrival 
times and amplitudes. The lack of such a smoothing may 
lead to instability in the amplitude calculations and the 
shape of the final waveforms. Consequently, future 
development of the WS method may include spatial 
smoothing of the wave-path arrivals during construction of 
synthetic seismograms. 

2.6 Application in a 3-D geometry 

The implementation of the WS method in a 3-D geometry 
requires extension of the 2-D algorithms described above. 
Minor modifications include the specification in three- 
dimensions of the velocity model. the wave-path coordinates 
and station locations. More difficult is the modification of 
the algorithms for wavelength-averaged velocity and for the 
identification of arrivals and determination of geometrical 
spreading at a station. 

For 3-D application, the wavelength-averaged velocity 
algorithm (eqs 4, 5 and 6) must be extended to  smooth the 
velocity over a 2-D wavefront. This extension requires the 
determination of control point locations on the wavefront 
outwards from a central location and the use of 2-D forms of 
the weighting functions with maximums at the central 
location (Fig. 7). 
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Figure 7. Wavelength-smoothing method in a 3-D geometry. (a) 
WS wave path, wavefront, global coordinates ( x ,  y ,  z } ,  wave-path 
location xp and wave-path centred coordinates {s, t ,  u ) .  (b) 
Calculation of control-point locations and relative weighting in one 
quadrant of the instantaneous wavefront. Control-point locations 
are estimated outwards from the wave-path location xp as indicated 
by the arrows. Shading indicates the relative amplitude of the 
wavelength-dependent smoothing function across the instantaneous 
wavefront surface; darker shading indicates higher amplitudes. 

3 BEHAVIOUR A N D  VALIDATION OF THE 
WAVELENGTH-SMOOTHING METHOD 

In this section the WS method is compared with existing 
wave-propagation techniques, and it is shown to follow basic 
laws of ray and wave propagation. In addition, some of the 
critical parameters controlling the WS propagation algo- 
rithm are discussed and calibrated. 

3.1 Wavelength-smoothing response to a simple crustal 
model 

As a n  illustration of basic features of the WS method, 
consider SH-wave propagation from a point source in a 
reference homogeneous layer over half-space model. Fig. 8 
shows this model geometry and the wave paths and reduced 
traveltimes for a WS simulation at four periods: 0.125, 0.5, 
2.0 and 8.0 s. Note that the wavelengths in the upper layer 
at these periods are about 0.014h, 0.07h, 0.28h and l . l h  
respectively, where h is the thickness of the layer. 
Free-surface reflections are not included in this example to  

allow characteristics of the direct wavefield to be examined. 
At all four periods, the WS method produces direct and 

transmitted S wave paths and the wide-angle or post-critical 
reflection, SmS (Fig. 8). In the 2.0s simulation a headwave 
phase, Sn, is defined by several arrivals between 
90 < A < 150 km. A few Sn arrivals are  also visible in the 0.5 
and 0.125 s simulations; this phase would be better defined if 
the number of wave paths were increased. 

The wave paths and traveltimes for the shortest period 
shown in Fig. 8, 0.125 s ,  are nearly identical to ray paths and 
traveltimes from standard ray-tracing methods. If even 
higher frequencies were used for the WS calculation, the 
corresponding wave paths and traveltimes would converge 
to those given by ray theory since the two methods are 
mathematically identical in the limit of infinite frequency 
(Lomax 1992). At longer periods, however, the WS wave 
paths and traveltimes differ from those of ray theory. This 
difference is indicated by comparing the 0.125 s WS results 
from those at 8.0 s in Fig. 8. At  8.0 s period, the SmS branch 
is reduced to a slight amplitude increase around A = 120 km 
and all arrivals fall along a single, smooth traveltime branch, 
(SmS-Sn),  near the S and Sn branches of ray theory. 

3.1.1 
discontinuities 

At the discontinuity between the layer and the half-space in 
the model in Fig. 8, the WS method produces the transmitted 
S, the Sn and the SmS phases without any special treatment 
in the propagation algorithm of wave paths at this boundary. 
In contrast, these transmitted and reflected phases are not 
produced by the differential equations for ray paths which 
are not valid a t  velocity discontinuities. With the ray 
methods these phases are modelled by tracing incident rays 
to the boundary and applying conditions of continuity a t  the 
boundary to set the initial conditions for new rays 
introduced at the discontinuity (Cervenf et al. 1977). 

Transmitted and reflected phases are produced directly in 
the WS method as a consequence of the smoothing of the 
medium velocity along the wavefront. The WS propagation 
algorithm actually produces only slowly varying refractions 
in this smoothed, ‘virtual’ medium, however, these refracted 
waves have the properties of sharply refracted (transmitted 
S), reflected (SmS) and diffracted (Sn )  waves when 
considered in the context of the original medium. 

It is noteworthy that the single WS algorithm models 
three wave phenomena, refractions, reflections and head 
waves, that must be treated separately with most other 
methods. This is an important aspect of the WS technique 
which allows the synthesis of significant features of the 
wavefield in models with complicated velocity variations. 
However, the WS method does not produce wave 
conversions in regions of large gradient in material 
properties which means that in such cases some wave types 
are ignored and that energy is not correctly partitioned 
along the wave paths. 

In particular, the lack of a pre-critical reflection from the 
sharp discontinuity between the layer and the half-space is a 
characteristic of the WS method. This phase should appear 
between A = O k m  and the distance of the frequency- 
dependent Sn-SmS cusp identified in Fig. 8. This phase is 

Behaviour of the wavelength-smoothing method at 
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Figure 8. Wavelength-smoothing wave paths and traveltimes for S waves at 0.125, 0.5 ,  2.0 and X . 0  s pcriod in a 25 km thick homogeneous layer 
over a honiogencous half-space velocity modcl. Thc layer and half-space have S-wave velocities o f  3.S and 4.4 km s and densities of 2.6 and 
3 .3gmcm ', respectively. The figures for each period: shows (bottom) the model and the wave paths in depth section, and (top) the 
traveltimes [or all WS surface arrivals (circles). Traveltimes are  plotted with a reduction velocity of 3.5 km s ' _  Each simulation shows 70 wave 
paths in a 95" fan originating at a point source at 12 km depth. The wavefrontmovement calculation uses a Gaussian-weighting function with 
a=2.0 and Om,;,, = 1.5. Approximate amplitudes for the waves are indicated by wave-path spreading and the density o f  arrivals on  the 
traveltime plot. The critical ray of geometrical optics for this geomctry is indicated by a dotted line o n  the depth section. Dotted lines on the 
traveltime plots show ray-theory travcltimcs from a ray-tracing algorithm (Crossley 1986) for the S, SmS and Sn branches. 
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of the half-space (4.4 km s-I). In contrast, arrivals a t  shorter 
periods in the region A > 50 km occur along several distinct 
traveltime branches. At all periods, the first arrivals fall near 
the earliest traveltime curves predicted by ray theory. 

All of the arrivals in the 8.0s  simulation for distances 
A > -150 km represent the Sn-headwave phase since the 
wave paths for these arrivals pass at or below the 
discontinuity through the top of the half-space. The greater 
number and corresponding increase in amplitude of the Sn 
arrivals at longer periods is in agreement with the theory 
that head waves have the form of the integral of the 
source-time pulse (Aki & Richards 1980) and consequently 
have more long-period content relative to direct waves and 
reflected waves. 

The convergence of wave paths and clustering of arrivals 
on the shorter period traveltime plots at the cusp near the 
critical angle for SmS indicate that the WS method produces 
high amplitudes in these regions (Fig. 8). These high 
amplitudes are also produced with ray methods; they are a 
non-physical consequence of the caustic surface at  the 
critical angle where the cross-section of the ray tube has 
vanishing area (Cerveng et al. 1977). Full-waveform 
methods would produce diffractions in this region. 
However, in contrast to geometrical ray theory, the location 
of the caustic surface and the cusp is frequency dependent in 
the WS method, moving to  greater distance at  longer periods 
(Fig. 8). This phenomena is predicted by theory for 
spherical waves impinging on a planar discontinuity and is 
referred to as ray displacement (Brekhovskikh 1980). In the 
WS method, the change in the position of the cusp allows a 
smoothing over frequency and space of the amplitude 
anomalies when a broad band of frequencies are  summed to 
produce synthetic seismograms. This smoothing tends to  
damp the effect of the non-physical amplitude peaks and 
improves the stability of the WS method in critical regions. 

The frequency-dependent wave paths are a direct 
consequence of the scaling of the velocity averaging with 
wavelength in the WS algorithm. The greater width of 
averaging along the instantaneous wavefront at longer 
periods causes the velocity contrast across the discontinuity 
to affect longer period wave paths at a greater distance than 
shorter period wave paths. This scaling effect can be  seen by 
examining the bending and bottoming of the 0.125 and 2.0 s 
wave paths near the 25 km discontinuity in Fig. 8. 

not modelled because the velocity smoothing in the WS 
method transforms medium discontinuities into gradient 
zones. 

The WS propagation algorithm only requires information 
about velocities a t  specific points in the model; it does not 
need information about the location, normal vectors, 
curvature or order of discontinuity of boundaries. A more 
complete treatment of wave propagation at sharp discon- 
tinuities requires the inclusion of logic in the WS algorithm 
for identification of interfaces as discontinuous surfaces and 
creation of new wave types at these interfaces in the manner 
of other techniques such as ray tracing (Cerveny et al. 1977) 
and in the Cagniard-DeHoop method (e.g. eqs 6.52 and 
6.53 in Aki & Richards 1980). A preliminary investigation 
of modifications of the WS method indicates that wave 
propagation near a discontinuity must be modelled either by 
matching boundary conditions or by applying the WS 
propagation algorithm for all wave paths. It may be 
impossible to combine both techniques at a particular 
boundary because, a t  each frequency, the WS method 
responds to  an effective, smoothed velocity distribution, 
while boundary-condition matching is always applied with 
respect to the original, unsmoothed discontinuity. 

If boundary-condition matching were applied at  selected 
discontinuities, the WS method would become structurally 
more similar to  ray methods with the addition of 
frequency-dependent velocity smoothing in the regions 
between discontinuities. This extension to  the WS method 
may improve its accuracy in situations where conversions or 
pre-critical reflections are  significant. 

3.1.2 Frequencydependent wave paths 

The results in Fig. 8 illustrate several important 
frequency-dependent effects of the WS method. At  all but 
the longest periods, the direct S wave paths that pass 
entirely in the upper part of the layer have almost identical 
paths and traveltimes (compare the 0.125 and 2.0s  period 
simulations in Fig. 8). The traveltimes are similar because 
the instantaneous wavefronts for intermediate and shorter 
periods for the direct S phase lie almost entirely within the 
homogeneous layer and consequently produce nearly 
identical wavelength-averaged velocities and wave-path 
bending. 

In contrast, reflected phases such as SmS that pass near 
the discontinuity a t  25 km depth exhibit earlier arrival times 
and smoother wave paths as period increases (Fig. 8). These 
frequency-dependent wave paths lead to  a simplification of 
the traveltime curves at longer periods as the Sn-SmS cusp 
shifts t o  greater epicentral distance. A s  will be shown later 
in an examination of synthetic seismograms, the change in 
SmS traveltimes with period imparts a frequency-dependent 
time delay that leads to  a phase shift and dispersion in the 
reflected pulse in the final synthetics. 

At an 8 s period the 25 km discontinuity reflection-branch 
SmS and the corresponding Sn-SmS cusps have nearly 
disappeared and the traveltime curve consists of two 
branches connected by a bend near A = 120 km. Most of this 
traveltime curve before the bend (40 < A < 120 km) has a 
slope corresponding approximately to the average velocity 
Of the layer (3.5 km s-'). The slope of the traveltime curve 
beyond the bend ( A  > 120 km) corresponds to the velocity 

3.1.3 Synthetic seismograms 

Figure 9 shows WS synthetic SH waveforms for the 
reference, homogeneous layer over half-space model from 
Fig. 8. The synthetics represent the along-strike response t o  
a point strike-slip source and includes reflections at the free 
surface. The results for two source-time functions are 
shown, a broad-band, impulsive source with a period range 
of 0.18 to 32.0s and a moderate bandwidth pulse with a 
centre period of 2.0 s. 

Also included in Fig. 9 are  synthetic waveforms for the 
same geometry and source functions produced by a 
normal-mode summation technique implemented by Robert 
Uhrhammer (private communication) following a method 
outlined in Aki & Richards (1980, Chapter 7). The 
normal-mode results give the numerical solution for the 
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Figure 9. Wavelength-smoothing (solid) and normal-mode (dotted) S H  synthetic seismograms for the homogeneous layer over the half-space 
velocity model and source location shown in Fig. 8. Synthetics are shown for two source types: (top) a broad-band impulse, and (bottom) a 
moderate bandwidth pulse. Reflections at the free surface are included. The small arrivals in the normal-mode synthetics before the direct S 
branch between 30 and 100 krn are an artefact of frequency-domain processing and should be ignored. The WS weighting-function parameters 
are the same as those in Table 1 .  

complete, far-field response in this geometry and are taken 
as a standard measure for evaluation of the WS method. 

The strongest arrivals produced in this simulation are the 
direct SH phase (S) and the wide-angle reflection at the 
25 km discontinuity (SmS) and its multiple surface 
reflections (sSrnS, 2SmS). The headwave (Sn) and related 
reflected phases (sSn, SmSSn) form lower amplitude 
branches arriving earlier than, and tangent, to  the 
corresponding reflected branches and converging with them 
at the critical distance. 

Figure 9 indicates a fairly close match between the two 
methods for the direct S arrival and the post-critical 
reflections and surface multiples. In agreement with the 
normal-mode results, the  direct S arrivals in the WS 
synthetics are nearly identical t o  the broad-band, impulse- 
source function. In contrast to  the impulsive, direct S phase, 

the SrnS arrival in both the normal-mode and the WS 
synthetics beyond 80 km has a distinct asymmetry. This 
asymmetry is related t o  a phase shift upon reflection at  the 
discontinuity between the layer and the half-space. In the 
WS method, the asymmetry is produced by the phase 
advance of the longer periods relative to  the shorter periods 
resulting from the reduced traveltimes of longer period 
waves that pass near the 25 km discontinuity. However, 
the phase shift in the WS method is significantly smaller 
than in the normal-mode results. This discrepancy may be  
related to the shape of the smoothing function and is 
discussed further below (Section 3.3.1). 

The WS results match the character and timing of the 
normal-mode Sn phase where it is clearly visible 
(80 < A 100 km) on the impulsive-source synthetics in Fig. 9. 
However, there is some amplitude mismatch between the 
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width parameter a have a strong effect on the WS results. 
Because the spread of the smoothing function varies linearly 
with both the width parameter and period, a wave path for 
period T and width parameter c a  will be identical t o  a wave 
path of period cT and width parameter a, where c is some 
constant. Consequently, the value of the width parameter a 
directly affects the assignment of wave-path arrivals to  
frequency in the construction of broad-band synthetics. 

The reference, homogeneous layer over half-space model 
introduced above (Fig. 8) and the accurate normal-mode 
solutions for this model can be used to calibrate the 
parameters that define the velocity weighting function. As 
an illustration, consider the effect of varying the width 
parameter (Y. The preferred weighting function and 
time-step parameters are listed in Table 1. The WS results 
using these values along with normal-mode results were 
shown in Fig. 9. 

In Figs 10 and 11 the effect of varying the 
weighting-function width parameter (Y is examined. When a 
smaller width is used (a= 1.0; Fig. 10) there is no 
observable change in the direct S arrivals, but there is a 
significant deterioration in the phase match of later phases 
relative to the normal-mode results. In addition, the 
amplitude and sharpness of the Sn arrival is reduced relative 
to the (Y = 2.0 WS results (Fig. 9). The poor match in the 
phasing of later arrivals is caused by a reduced difference in 
traveltime between waves of different frequencies when 
narrower smoothing functions are employed. 

With a larger width parameter (a = 3.0; Fig. 11) there is a 
slight improvement relative to  the ( ~ = 2 . 0  results of the 
match with the normal-mode synthetics of the phasing of 
reflected arrivals (SmS, sSmS and 2SmS). There are, 
however, changes in the direct S arrivals and the Sn arrivals 
resulting in a poorer match to  the normal-mode results than 
that given by the a=2.0 synthetics. This change in S 
arrivals is clearest on  the wide-band source synthetics where 
there is an amplitude instability on traces around 120 km 
and an underestimate of amplitudes at  greater distances. For 
the Sn arrival, an increase in amplitude and a delay in the 
onset time relative to the a = 2 . 0  WS results on the 
impulsive source synthetics gives a poorer match to  the 
normal-mode results. 

A similar comparison between the Gaussian, cosine and 
‘modified Fresnel’ weighting functions using the layer over 
half-space model shows that the Gaussian weighting 
function is generally superior to  the cosine and ‘modified 
Fresnel’ functions (Lomax 1992). However, the phase shift 

two methods, which may be related to the approximate 
modelling of the Sn-diffracted phase by a refraction in the 
WS method. The shape of the head waves in both methods 
is of the form of the integral of the source-time pulse. In 
the WS method this integration is produced by a delay in 
traveltime and an increase in amplitude of the longer period 
Sn arrivals relative to  those at shorter periods; these effects 
are equivalent t o  the frequency-domain integration opera- 
tion of dividing each spectral component by iw.  

Significant shortcomings of the WS method apparent in 
Fig. 9 are the incorrect phasing of reflections near the 
critical distance and the lack of pre-critical reflections. These 
discrepancies can be seen in each reflection branch and are 
clearest on the impulsive-source synthetics. 

3.2 The wavelength-smoothing method and basic laws of 
optics 

In regions further than about a wavelength from 
discontinuities in the velocity structure, the wave propaga- 
tion produced by the WS method follows the basic laws of 
optics concerning reflection and refraction at a plane 
discontinuity (Lomax 1992). This result is a direct 
consequence of the equivalence of the equations governing 
ray theory and those governing the wavefront movement in 
the WS method. However, close to a discontinuity, the WS 
wave paths a t  a given frequency d o  not locally follow the 
laws of optics on the original medium because the WS 
method is responding to  a modified velocity distribution 
produced using the wavelength-averaged velocity. 

3.3 Selection and calibration of wavelength-averaged 
velocity weighting functions 

The WS method is characterized by the wavelength- 
dependent averaging of wave velocity across a surface 
normal to the wave path. Without this averaging the WS 
technique would not have any frequency dependence and 
would be identical t o  the geometrical ray method. 
Consequently, the justification, selection and calibration of 
the averaging algorithm are of crucial importance in the 
validation of the WS method as a new and useful tool. 

3.3.1 

In this work a weighting function w with a Gaussian bell 
form is introduced (eq. 8); in Lomax (1992) two additional 
weighing functions, a cosine bell and the ‘modified Fresnel’ 
function are considered. All of these weighting functions 
have the form 

Functional form of the weighting function 

w = Me,; N ,  a, em;,,), (16) 

and the property 

lim w = 0, 

where 0, is distance along the instantaneous wavefront away 
from the wave path for the nth control point expressed in 
wavelengths, N is the total number of control points, 0,,, is 
a truncation parameter and a is a width parameter. 

The functional form of the weighting function and the 

Table 1. Preferred wavelength-smoothing propagation para- 
meters 

Parameter Value 

Weighting function Gaussian 

a (Width parameter) 2.0 

(Truncation parameter) 1 .s 
N (Number of control points) 

T /At (Time-steps per period) 

21 to41  

> 30 
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Figure 10. Synthetics using Gaussian-weighting function with (Y = 1.0. Wavelength-smoothing (solid) and normal-mode (dotted) SH synthetic 
seismograms for the homogeneous layer over half-space model and source from Fig. 8 with the addition of reflections at the free surface. 
Synthetics are shown for two source types: (top) a broad-band impulse, and (bottom) moderate bandwidth pulse. The WS weighting-function 
parameters from Table I are used except for (Y = 1.0. 

of the reflected phases and the shape of the onset of the Sn 
phase in the ‘modified Fresnel’ synthetics match the 
normal-mode results better than the same features in the 
Gaussian weighting-function synthetics. Apparently the 
difference in shape of the ‘modified Fresnel’ weighting 
function relative to the Gaussian and cosine functions (Fig. 
4) is significant; the ‘modified Fresnel’ weighting function 
and other weighting-function forms should be examined 
further in future work. 

3.3.2 Selection of truncation parameter, time step and 
number of control points 

The truncation parameter Om,, is relevant to the Gaussian 
and other weighting functions that asymptotically approach 
0 as O+m. The value of Om;,, sets a cut-off distance along 
the instantaneous wavefront beyond which the weighting 

function is not applied. This parameter is not considered 
critical since the value of the wavelength-averaged velocity 
is expected to  converge for large O,,,. Tests with the 
Gaussian weighting function indicate that a truncation of the 
tails at the point where the amplitude is around 1/100 of the 
maximum amplitude gives stable results. This is equivalent 
to  a cut-off at about 1.5 times the half-width of the bell 
( Omax = 1 S). There is a trade-off between the truncation 
level and the spread of the control points. For a fixed 
number of control points, a larger truncation value Om,, 
increases the spread of the control points and can cause 
instabilities due to  wide spacing of control points in high 
gradient portions of the velocity smoothing function. 

In this work the number of control points, N, and the 
propagation time step, At, are each specified by two numbers 
giving the values a t  shortest and longest periods, 
respectively; the values of N and At for intermediate periods 
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Figure 11. Synthetics using Gaussian weighting function with a = 3.0. Wavelength-smoothing (solid) and normal-modc (dotted) S H  synthetic 
seismograms for the homogeneous layer over half-space model and source from Fig. 8 with the addition o f  reflections at thc frcc surface. 
Synthetics are shown for two source types: (top) a broad-band impulse, and (bottom) moderate bandwidth pulse. The WS weighting-function 
parameters from Table 1 are used except for a = 3.0. 

are set between the limiting values in proportion to the 
logarithm of period. The locations of WS wave paths and 
traveltimes along them will converge to limiting values as N 
becomes large and At becomes small. This convergence is 
illustrated in Fig. 12 which shows the effect of varying Nand 
the ratio of period to time step, T / A t ,  on the WS 
calculation for a single wave path. N and T f A t  are 
comparable, period-independent measures that express the 
sampling of the medium in the WS algorithm perpendicular 
to and parallel to the wave path, respectively. The error in 
wave-path location as a percentage of total path length is 
shown for a wave path that has reflected off of the 
discontinuity in the reference layer over the half-space 
model (Fig. 8) for various values of Nand T / A t .  The curves 
in Fig. 12 indicate that values of about 20 to 40 or greater 
for both N and for the ratio T f A t  give a path error of about 
1 per cent or less relative to the estimated converged path. 

This error analysis is valid at all periods because i t  
considers reflections from an infinite planar discontinuity 
which has no characteristic length. However, a similar 
analysis for a model with some characteristic length or 
lengths of velocity variation may indicate different, 
frequency-dependent optimum values for N and T f A t .  In 
particular, it may be important to vary the value of N as a 
function of period so that the spacing between weighting- 
function control points does not exceed the characteristic 
length of velocity variation in the model. For most models, a 
larger value of N should be used for longer periods. In a 
perfectly self-similar model, where the variation in velocity 
has no characteristic size, the value of N can be set 
independent of period. 

In general, the values of N and At for a given period 
should be selected so that the distance between control 
points is similar to the distance the wave path moves in each 
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Figure 12. Wavelength-smoothing wave-path error as  a function of: 
(top) number of control points N, and (bottom) number of time 
steps per  period T/Af for a wave path that has reflected at a planar 
first-order discontinuity between homogeneous half-spaces. The  
path error is the ratio of the perpendicular distance between the 
wave path and the ‘converged’ wave path at a given location 
normalized by the path length between this location and the point 
of reflection. The  ‘converged’ wave path is that given using the 
largest values o f  N and T / A t .  In each comparison error curves are  
shown for minimal acceptable values ( T / A t  = 20, N = 31) and high 
values (T/Ar = 80, N = 91) of the fixed parameter N or  T / A t .  

time step, that is, 

where A, is a characteristic wavelength for the model and v, 
is a characteristic velocity. This relation ensures that the 
model is sampled at  a similar spacing parallel and 
perpendicular t o  the wave path. Since A, = v,T where T is 
the period, expression (18) reduces to  

m 
1 N-- 

At ’ 

This result is compatible with the values for N and T l A t  
found above in the wave-path error analysis. 

4 THE WAVELENGTH-SMOOTHING 
METHOD IN COMPLEX S T R U C T U R E S  

The preceding investigations of the WS method are for 
simple, highly symmetric models. It is important to examine 
the accuracy of the WS method in complex models which 
cannot be  modelled efficiently by existing methods. 

4.1 Rough-interface model 

In this section, comparisons are presented between the WS 
method and a boundary-integral technique (Bouchon & Aki 
1977) for wave propagation in a laterally varying medium. A 
boundary-integral method implemented by Olivier Coutant 
(private communication) using a discrete wavenumber 
description of Green’s functions (Campillo & Bouchon 
1985) is used in the following comparisons. This discrete 
wavenumber-boundary-integral method (DW-BI) produces 
the complete incident, reflected and diffracted field over a 
limited frequency band for SH-wave propagation in a 2-D 
model consisting of two homogeneous regions separated by 
a rough interface. 

For the following comparisons, WS synthetics for a 
broad-band, impulsive source are produced using the 
preferred weighting-function parameters from Table 1. 
Because it is a 2-D formulation, the DW-BI method 
produces the response t o  a line source; this response 
includes a l / f i  decay in the pulse shapes. To produce 
equivalent, line-source seismograms, the WS synthetics 
include 2-D geometrical spreading and are convolved with 
the DW-BI synthetic for a homogeneous whole-space. 

Relative to the DW-BI calculations, the WS calculations 
are an order of magnitude faster, require a small fraction of 
the computer memory and cover a broader band of 
frequencies. 

4.1.1 Plane interfuce 

To illustrate the DW-BI method and the accuracy of the 
WS technique, both methods are first applied t o  the 
homogeneous layer over the half-space model discussed 
earlier (Fig. 8). Synthetic seismograms for the response at  
the surface are shown in Fig. 13. The DW-BI synthetics 
include the direct S phase, the reflection from the base of 
the layer (SmS) and the head wave (Sn). The WS synthetics 
match the direct S, the wide-angle SrnS reflection (distance 
A >  -100km) and the Sn phases closely, but d o  not 
produce the pre-critical SnzS reflection (A < -90 km). The 
WS amplitudes are larger than the DW-BI amplitudes in 
the region 110 < A < 130 km; this amplitude increase can be 
attributed to  non-physical, high-amplitude arrivals in the 
WS method at the frequency-dependent critical distance. In 
the region A > 130 km the WS amplitudes for the combined 
direct S and SrnS pulse are  smaller and there is some 
distortion of the earlier Sn waveform relative to  the DW-BI 
results. These differences may be related to  the approximate 
modelling in the WS method of a diffracted phase, Sn, with 
a refraction algorithm. In the WS simulation, the energy 
that should form the pre-critical reflection at A < -90 km 
and diffractions at  A > 1 3 0 k m  is mapped into the region 
110 < A < 130 km. 

4.1.2 Rough interface 

Figure 14 shows a rough interface model and WS wave paths 
and traveltimes at high frequency and at an intermediate 
period for an SH-line source in the layer above the 
interface. The amplitude of the interface is described by a 
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Figure 13. Synthetic seismograms foi 
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he flat-boundary velocity model of Fig. 8. Upper: discrete-wavenumber-boundary-integral (DW-BI) 
synthetics. Lower: wavelength-smoothing synthetics (solid) and DW-BI synthetics (dotted). All synthetics represent the response to a low-pass 
filtered, doubly integrated, step-function source. 

sum of sinusoids centred at a mean depth z,,, 

where x is horizontal distance, z is depth, A, is the 
amplitude and A, the wavelength of the kth sinusoid. The 
model described in Fig. 14 is a simplified 2-D characteriza- 
tion of complicated vertical and lateral crustal-velocity 
variations that may exist in many parts of the world. In the 
current analysis, this structure is of interest as an illustration 
of the validity and accuracy of the WS method in realistic 
complex structures. 

The wave paths in Fig. 14 show the effect of 
frequency-dependent smoothing in the WS method in 
complex models. Short-period wave paths with wavelengths 
much smaller than the scale of undulations of the rough 
boundary ( T  = 0.25 s) are scattered by this boundary 
producing a chaotic traveltime signature. The longer period 

wave paths (T = 2.8 s) are affected more coherently by the 
boundary, producing a region of focusing at  l l 0 <  A < 
150 km. 

Figure 15 shows the DW-BI and WS synthetics for the 
rough boundary model of Fig. 14. The DW-BI rough- 
boundary synthetics are significantly different from the 
DW-BI flat-layer synthetics (Fig. 13) for all phases except 
the direct S at A < 90 km. Notable differences include the 
lack of a coherent pre-critical SmS reflection at A < 90 km, 
the deterioration of the SmS reflection and corresponding 
change in waveforms at 90 < A < -150 km and the reduced 
amplitude of the combined direct S and SmS phase at 
A>-150km. There is also a striking change in the 
waveforms between A = 150 and A = 160 km due t o  a partial 
shadow zone beyond 150 km. 

The WS synthetics for the rough boundary model (Fig. 
15) match the main features on the DW-BI synthetics a t  all 
distances except for A = 150 km. The lack of coherent 
pre-critical reflections in the DW-BI synthetics is matched 
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by the WS results simply because this phase is neglected in 
the WS algorithm. Also, the excellent match of the WS 
direct S phase at A < 90 km to the DW-BI waveforms is of 
minor interest since this phase is little affected by the rough 
boundary. However, the reproduction by the WS method of 
significant features of the DW-BI waveforms at A > Y O  km 
indicates that the approximate WS algorithm responds well 
to the complex, rough-boundary model. In particular, the 
WS synthetics correctly predict the overall change in shape 
and amplitude between waveforms at  A < 150 km and those 
at A > 150 km. 

There is a significant mismatch in amplitude between the 
WS and DW-BI synthetics at A =  150km. IIere. an 
increased amplitude in the WS waveform is caused by the 
focusing and convergence of wave paths reaching the surface 
near A = 150 km (Fig. 14). The simple technique used in the 
WS algorithm for estimating amplitudes based on the 
spreading of adjacent wave paths is unstable in regions 
where wave paths converge. While non-physical, high 
amplitudes are to  be expected in such regions in both the 
WS and basic ray methods, it is likely that the WS method 
can be modified to reduce the significance of amplitude 
singularities. Such modifications might include the use of 

O 0  

Oe 
~ 0 0 0 0 0  0 0 0 : O 000% : 0 0 0 0  

amplitude-estimation techniques from advanced ray meth- 
ods (Cerveng et al. 1977) or the use of a wavelength- 
dependent spatial smoothing of amplitude in the construc- 
tion of WS synthetics. 

There is also some difference in the shape of the WS 
waveforms relative to the DW-BI waveforms beyond 
A = 150 km that may be related to  the amplitude anomaly at 
A =  150km. Some of the energy arriving beyond this 
distance in the more accurate DW-BI simulation probably 
is caused by diffractions from the high-amplitude wavefield 
arriving near A = 150 km. In the WS method, the energy 
that would contribute to this diffraction is contained in the 
focused wave paths arriving near A = 150 km (Fig. 14) and 
contributes to the high-amplitude singularity. There is the 
possibility that an improved treatment of the amplitude 
instability at A = 150 km may lead to an improvement in the 
waveforms shapes for A > 150 km. 

Overall, the WS method reproduces approximately most 
of the features of the accurate DW-BI synthetics from both 
the flat layer and rough-interface models. And, the WS 
computations for both models are an order of magnitude 
faster than the DW-BI computations. These are important 
results because they indicate that the approximate WS 
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Figure 14. Rough-boundary velocity model and wavelength-smoothing results for periods of 0.25 and 2 .8s .  The model consists of a 
homogeneous layer over a homogeneous half-space separated by an irregular boundary. The model parameters are otherwise the same as in 
Fig. 8. The boundary parameters from eq. (20) are lo= 25 km; k = 1,4; A, = {2, 4, 7 ,  14 km); = (12, 24, 32, 80 km).  The figure for each 
period shows: (lower) a cross-section of the model and WS wave paths, and (upper) the reduced traveltimes for surface arrivals plotted as a 
function of epicentral distance. 
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Figure 14. (Continued.) 

method may be a useful tool for modelling wave 
propagation in complex models, although further numerical 
testing and theoretical development of the method is 
required. 

DISCUSSION 

The WS method is intended for the modelling of broad-band 
seismic-wave propagation in geologic structures with 
complicated wave-velocity variations. This approximate, 
numerical method has been developed based on the premise 
that waves at  a given period respond to  all variations in 
material properties as if these properties were smoothed 
over space in proportion to  the local wavelength. Wave 
paths are moved through space using an approximation to 
Huygens' principle applied using the wavelength-smoothed 
velocity values. 

Analysis with the WS method is analogous to  the repeated 
application of geometrical ray tracing through different, 
smoothed versions of a particular velocity model. However, 
unlike the somewhat arbitrary model smoothing that is often 
applied before the use of ray and other methods, the 
smoothing in the WS method is given an explicit frequency 
dependence. Also, the smoothing is performed dynamically 
as a function of the position and orientation of the 
instantaneous wavefronts. The WS technique therefore 

avoids the significant computational overhead that would be 
required to calculate and store smoothed versions of an 
initial model. 

It should be noted that the WS method, with its 
wavelength smoothing, appears similar to extensions to  the 
ray method such as the Gaussian-beam method (cervenp, 
Popov & PSenEik 1982; Cerveng 1983) and Fresnel-volume 
ray tracing (eervenp & Soares 1992), both of which involve 
finite beam widths. However, there are significant 
differences between these techniques and the WS method 
which underscore the uniqueness of the WS method 
(Appendix A). 

The wavelength-smoothing method produces the follow- 
ing wave types and wave phenomena over a broad 
frequency range. 

(1) Refracted direct waves are accurately reproduced in 
homogeneous or smoothly varying regions. 

(2) Transmitted refractions, wide-angle reflections and 
head waves are reproduced approximately at discontinuities. 

(3) Frequency-dependent scattering of some wave types is 
reproduced as a function of the ratio of wavelength to 
characteristic size of scattering region. 

(4) A portion of the diffracted energy is produced in 
geometrical shadow regions. 

However, the wavelength-smoothing method as currently 
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Figure 15. Synthetic seismograms for the rough-boundary velocity model of Fig. 14. Upper: discrete-wavenumber-boundary integral 
(DW-BI) synthetics. Lower: wavelength-smoothing synthetics (solid) and DW-BI synthetics (dotted). All synthetics are convolved with the 
same low-pass filtered, doubly integrated step-function source. The late, low-amplitude signal on the DW-BI synthetics at A 5 100 km is due 
to scattered, pre-critical reflections from the rough boundary. The high-frequency oscillation at A 2 150 km and the higher amplitude noise for 
f > -1 s at A 2 180 km on the DW-BI synthetics are a consequence of computational limitations and should be ignored. 

formulated does not reproduce some features of the 
complete wavefield and has certain instabilities. These 
deficiencies include the following points. 

(1) In regions with strong velocity gradients there are no 
pre-critical reflections or wave-type conversions. 

(2) In critical regions where the geometrical spreading 
function is small or singular there may be instability in the 
amplitude estimates. 

(3) There is incomplete modelling of diffracted waves in 
geometrical shadow regions. 
(4) The use of a finite number of wave paths can lead to 

poor sampling of parts of the structure and inaccurate 
synthesis of corresponding parts of the wavefield. 

(5) The wavelength-smoothing method is a kinematic 
technique which approximates scalar-wave propagation; this 
method does not produce many elastic-wave phenomena. 

The features and shortcomings of the wavelength- 
smoothing algorithm are a consequence of its tracking 
refractions only in a smoothed version of the original 
velocity model. In particular, the first three shortcomings 
are related because the WS method maps some of the wave 
energy that should form pre-critical reflections, converted 
wave types and diffractions into refractions in singular 
regions. This shifting of energy leads to the amplitude 
instability in waveforms near-critical regions. 

Most of the shortcomings discussed above are also found 
in geometrical ray tracing; however, some are less serious in 
the WS method as a consequence of its frequency 
dependence. Many of the deficiencies of the WS method 
may be minimized as the method is further developed, 
perhaps using techniques from extensions to the ray 
method. 

The WS method, though not strictly derived from basic 
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equations, produces many expected broad-band wave 
phenomena in simple and complicated velocity structures. 
However, future work on  the method should include 
investigation of a formal derivation of the propagation 
algorithm, perhaps making further use of the Helmholtz- 
Kirchhoff integral theorem, by examination of Fresnel zones 
(e.g. Cerveng & Soares 1992) or using concepts of ‘wave 
paths’ in diffraction tomography (Woodward 1992). 

In addition to  the modifications to  the WS method 
discussed above with regards to  shortcomings of the 
method, other extensions to the algorithm may be of use in 
many seismological studies. For example, the WS method 
can be easily modified to include intrinsic attenuation 
through the specification of the quality factor Q (Bullen & 
Bolt 1985) in the velocity model and the WS method can be 
used in inversion for velocity structure since the wave paths 
between source and receiver are known. 
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APPENDIX A 

The WS technique is often compared with the Gaussian- 
beam method since both involve exponential bell functions 
and a nominal, finite wave-path width. Consequently, it is 
important to  note some fundamental aspects of the 
Gaussian-beam method that help to  distinguish the WS 
method from it. First, the finite width of the Gaussian beam 
contributes amplitude and phase information only to  the 
solution and does not influence the beam paths. The paths 
are traced using standard ray theory before application of 
the beam methodology. In the WS method the wave paths 
are frequency dependent. Second, in constructing the 
Gaussian-beam solution the elastic properties away from the 
central ray are estimated with a Taylor expansion using the 
elastic properties and their derivatives evaluated only at  the 
central ray. Consequently, the Gaussian-beam method is 
restricted to smoothly varying media and the solutions are 
exact only for a virtual medium defined by the properties a t  
the central ray. When the beam width becomes large the 
virtual medium properties may differ significantly from the 
actual medium. In particular, the s_olutions may be 
inaccurate near strong lateral variations (Cerveng 1985b). In 



334 A. Lorna 

contrast, the velocity smoothing in the WS method makes 
explicit use of medium properties a t  finite distances from the 
wave paths. Finally, the Gaussian-beam method is defined 
as a high-frequency method only, while the WS method is 
developed for broad-band modelling. 

Another aspect of the Gaussian-beam method to  note is 

that the initial beam width is not determined a priori. In 
practice the optimum beam-width parameter depends on the 
geometry of the model (cerveny 1985b). In the WS method 
there is a similar, smoothing-width factor (e.g. LY in eq.  3) 
which, in the present propagation algorithm, is also not 
determined theoretically. 


