
330 A .  Lomax 

8 -  

2 4 -  
v 

'? 0 -  

h 

u 

m 

by the WS results simply because this phase is neglected in 
the WS algorithm. Also, the excellent match of the WS 
direct S phase at A < 90 km to the DW-BI waveforms is of 
minor interest since this phase is little affected by the rough 
boundary. However, the reproduction by the WS method of 
significant features of the DW-BI waveforms at A > Y O  km 
indicates that the approximate WS algorithm responds well 
to the complex, rough-boundary model. In particular, the 
WS synthetics correctly predict the overall change in shape 
and amplitude between waveforms at  A < 150 km and those 
at A > 150 km. 

There is a significant mismatch in amplitude between the 
WS and DW-BI synthetics at A =  150km. IIere. an 
increased amplitude in the WS waveform is caused by the 
focusing and convergence of wave paths reaching the surface 
near A = 150 km (Fig. 14). The simple technique used in the 
WS algorithm for estimating amplitudes based on the 
spreading of adjacent wave paths is unstable in regions 
where wave paths converge. While non-physical, high 
amplitudes are to  be expected in such regions in both the 
WS and basic ray methods, it is likely that the WS method 
can be modified to reduce the significance of amplitude 
singularities. Such modifications might include the use of 

O 0  

Oe 
~ 0 0 0 0 0  0 0 0 : O 000% : 0 0 0 0  

amplitude-estimation techniques from advanced ray meth- 
ods (Cerveng et al. 1977) or the use of a wavelength- 
dependent spatial smoothing of amplitude in the construc- 
tion of WS synthetics. 

There is also some difference in the shape of the WS 
waveforms relative to the DW-BI waveforms beyond 
A = 150 km that may be related to  the amplitude anomaly at 
A =  150km. Some of the energy arriving beyond this 
distance in the more accurate DW-BI simulation probably 
is caused by diffractions from the high-amplitude wavefield 
arriving near A = 150 km. In the WS method, the energy 
that would contribute to this diffraction is contained in the 
focused wave paths arriving near A = 150 km (Fig. 14) and 
contributes to the high-amplitude singularity. There is the 
possibility that an improved treatment of the amplitude 
instability at A = 150 km may lead to an improvement in the 
waveforms shapes for A > 150 km. 

Overall, the WS method reproduces approximately most 
of the features of the accurate DW-BI synthetics from both 
the flat layer and rough-interface models. And, the WS 
computations for both models are an order of magnitude 
faster than the DW-BI computations. These are important 
results because they indicate that the approximate WS 
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Figure 14. Rough-boundary velocity model and wavelength-smoothing results for periods of 0.25 and 2 .8s .  The model consists of a 
homogeneous layer over a homogeneous half-space separated by an irregular boundary. The model parameters are otherwise the same as in 
Fig. 8. The boundary parameters from eq. (20) are lo= 25 km; k = 1,4; A, = {2, 4, 7 ,  14 km); = (12, 24, 32, 80 km).  The figure for each 
period shows: (lower) a cross-section of the model and WS wave paths, and (upper) the reduced traveltimes for surface arrivals plotted as a 
function of epicentral distance. 
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Figure 14. (Continued.) 

method may be a useful tool for modelling wave 
propagation in complex models, although further numerical 
testing and theoretical development of the method is 
required. 

DISCUSSION 

The WS method is intended for the modelling of broad-band 
seismic-wave propagation in geologic structures with 
complicated wave-velocity variations. This approximate, 
numerical method has been developed based on the premise 
that waves at  a given period respond to  all variations in 
material properties as if these properties were smoothed 
over space in proportion to  the local wavelength. Wave 
paths are moved through space using an approximation to 
Huygens' principle applied using the wavelength-smoothed 
velocity values. 

Analysis with the WS method is analogous to  the repeated 
application of geometrical ray tracing through different, 
smoothed versions of a particular velocity model. However, 
unlike the somewhat arbitrary model smoothing that is often 
applied before the use of ray and other methods, the 
smoothing in the WS method is given an explicit frequency 
dependence. Also, the smoothing is performed dynamically 
as a function of the position and orientation of the 
instantaneous wavefronts. The WS technique therefore 

avoids the significant computational overhead that would be 
required to calculate and store smoothed versions of an 
initial model. 

It should be noted that the WS method, with its 
wavelength smoothing, appears similar to extensions to  the 
ray method such as the Gaussian-beam method (cervenp, 
Popov & PSenEik 1982; Cerveng 1983) and Fresnel-volume 
ray tracing (eervenp & Soares 1992), both of which involve 
finite beam widths. However, there are significant 
differences between these techniques and the WS method 
which underscore the uniqueness of the WS method 
(Appendix A). 

The wavelength-smoothing method produces the follow- 
ing wave types and wave phenomena over a broad 
frequency range. 

(1) Refracted direct waves are accurately reproduced in 
homogeneous or smoothly varying regions. 

(2) Transmitted refractions, wide-angle reflections and 
head waves are reproduced approximately at discontinuities. 

(3) Frequency-dependent scattering of some wave types is 
reproduced as a function of the ratio of wavelength to 
characteristic size of scattering region. 

(4) A portion of the diffracted energy is produced in 
geometrical shadow regions. 

However, the wavelength-smoothing method as currently 
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Figure 15. Synthetic seismograms for the rough-boundary velocity model of Fig. 14. Upper: discrete-wavenumber-boundary integral 
(DW-BI) synthetics. Lower: wavelength-smoothing synthetics (solid) and DW-BI synthetics (dotted). All synthetics are convolved with the 
same low-pass filtered, doubly integrated step-function source. The late, low-amplitude signal on the DW-BI synthetics at A 5 100 km is due 
to scattered, pre-critical reflections from the rough boundary. The high-frequency oscillation at A 2 150 km and the higher amplitude noise for 
f > -1 s at A 2 180 km on the DW-BI synthetics are a consequence of computational limitations and should be ignored. 

formulated does not reproduce some features of the 
complete wavefield and has certain instabilities. These 
deficiencies include the following points. 

(1) In regions with strong velocity gradients there are no 
pre-critical reflections or wave-type conversions. 

(2) In critical regions where the geometrical spreading 
function is small or singular there may be instability in the 
amplitude estimates. 

(3) There is incomplete modelling of diffracted waves in 
geometrical shadow regions. 
(4) The use of a finite number of wave paths can lead to 

poor sampling of parts of the structure and inaccurate 
synthesis of corresponding parts of the wavefield. 

(5) The wavelength-smoothing method is a kinematic 
technique which approximates scalar-wave propagation; this 
method does not produce many elastic-wave phenomena. 

The features and shortcomings of the wavelength- 
smoothing algorithm are a consequence of its tracking 
refractions only in a smoothed version of the original 
velocity model. In particular, the first three shortcomings 
are related because the WS method maps some of the wave 
energy that should form pre-critical reflections, converted 
wave types and diffractions into refractions in singular 
regions. This shifting of energy leads to the amplitude 
instability in waveforms near-critical regions. 

Most of the shortcomings discussed above are also found 
in geometrical ray tracing; however, some are less serious in 
the WS method as a consequence of its frequency 
dependence. Many of the deficiencies of the WS method 
may be minimized as the method is further developed, 
perhaps using techniques from extensions to the ray 
method. 

The WS method, though not strictly derived from basic 
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equations, produces many expected broad-band wave 
phenomena in simple and complicated velocity structures. 
However, future work on  the method should include 
investigation of a formal derivation of the propagation 
algorithm, perhaps making further use of the Helmholtz- 
Kirchhoff integral theorem, by examination of Fresnel zones 
(e.g. Cerveng & Soares 1992) or using concepts of ‘wave 
paths’ in diffraction tomography (Woodward 1992). 

In addition to  the modifications to  the WS method 
discussed above with regards to  shortcomings of the 
method, other extensions to the algorithm may be of use in 
many seismological studies. For example, the WS method 
can be easily modified to include intrinsic attenuation 
through the specification of the quality factor Q (Bullen & 
Bolt 1985) in the velocity model and the WS method can be 
used in inversion for velocity structure since the wave paths 
between source and receiver are known. 
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APPENDIX A 

The WS technique is often compared with the Gaussian- 
beam method since both involve exponential bell functions 
and a nominal, finite wave-path width. Consequently, it is 
important to  note some fundamental aspects of the 
Gaussian-beam method that help to  distinguish the WS 
method from it. First, the finite width of the Gaussian beam 
contributes amplitude and phase information only to  the 
solution and does not influence the beam paths. The paths 
are traced using standard ray theory before application of 
the beam methodology. In the WS method the wave paths 
are frequency dependent. Second, in constructing the 
Gaussian-beam solution the elastic properties away from the 
central ray are estimated with a Taylor expansion using the 
elastic properties and their derivatives evaluated only at  the 
central ray. Consequently, the Gaussian-beam method is 
restricted to smoothly varying media and the solutions are 
exact only for a virtual medium defined by the properties a t  
the central ray. When the beam width becomes large the 
virtual medium properties may differ significantly from the 
actual medium. In particular, the s_olutions may be 
inaccurate near strong lateral variations (Cerveng 1985b). In 
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contrast, the velocity smoothing in the WS method makes 
explicit use of medium properties a t  finite distances from the 
wave paths. Finally, the Gaussian-beam method is defined 
as a high-frequency method only, while the WS method is 
developed for broad-band modelling. 

Another aspect of the Gaussian-beam method to  note is 

that the initial beam width is not determined a priori. In 
practice the optimum beam-width parameter depends on the 
geometry of the model (cerveny 1985b). In the WS method 
there is a similar, smoothing-width factor (e.g. LY in eq.  3) 
which, in the present propagation algorithm, is also not 
determined theoretically. 


