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SUMMARY 
The wavelength-smoothing (WS) method was introduced recently (Lomax 1994) as 
a method for the rapid estimation of the principal features of broad-band wave 
phenomena in realistic, complicated structures. The WS method is based on the concept 
that waves at a particular frequency and corresponding wavelength respond to a 
complicated velocity distribution as if the distribution were smoothed over about a 
wavelength. This method reproduces several finite-frequency wave phenomena, but has 
not been given a formal theoretical justification. Here, we use scattering theory and a 
local, plane-wave approximation to develop a wavelength-averaging ( WA) method for 
modelling finite-frequency wave propagation. The new WA method is similar to the 
WS method in concept and implementation, but is valid only in a more limited 
geometry of velocity heterogeneity. In particular, the new formulation performs well 
for models with complex, but smoothly varying, velocity variations (‘quasi-random’ 
models), but does less well in models with extensive regions of slowly varying velocity 
that are separated by strong gradients in velocity (‘deterministic’ models). This limits 
application of the current formulation of the WA method to predominantly quasi- 
random structures, although such models may be useful in many problems, particularly 
for Monte-Carlo-based inversion methods requiring fast forward calculations. 

Key words: body waves, inhomogeneous media, synthetic seismograms, wave 
propagation. 

1 INTRODUCTION 

The wavelength-smoothing method was introduced recently 
(Lomax 1994) as a method for approximating broad-band 
wave propagation in complicated velocity structures. This 
method was developed as an alternative to (1) ray-based 
methods, which are rapid but only valid for a high-frequency 
wavefield, (2) waveform methods such as generalized-ray, 
reflectivity and modal summation techniques, which are eff- 
icient and accurate but are only applicable to a limited class 
of relatively simple structures such as plane layer models, and 
(3)  numerical methods such as finite differences and finite 
elements, which are applicable to broad-band wave propagation 
in relatively complicated models but require large computation 
times. Although not as complete as these existing methods, the 
wavelength-smoothing method is intended for rapid estimation 
of the principal features of broad-band wave phenomena in 
realistic, complicated structures. Such a method is useful for 
inversion using trial and error, Monte Carlo, and directed 
search methods such as the genetic algorithm and simulated 
annealing. 

The wavelength-smoothing ( WS) method is based on 

two principal assumptions (Lomax 1994). First, it is assumed 
that many features of broad-band wave propagation can be 
modelled by using Huygens’ principle to track the motion of 
narrow-band waoefronts at a number of centre frequencies. 
Second, it is assumed that the velocity of propagation of body 
waves at a particular frequency and location can be approxi- 
mated by a wavelength-averaged velocity, given by a centrally 
weighted average of the medium velocity across the narrow- 
band wavefront, where the width of the weighting function 
varies in proportion to the wavelength (Fig. 1). The motion 
through time of the narrow-band wavefronts determines wave 
paths, which are similar to the rays of ray theory, but are 
frequency-dependent. The wavelength-dependent smoothing of 
the medium in the WS algorithm leads to increased stability 
of the wave paths relative to high-frequency, ray-theory rays 
and it causes the wave paths to be sensitive to velocity 
variations within about a wavelength of the wave path (Fig. 2). 
After many sets of wave paths at a range of centre frequencies 
have been generated, broad-band waveforms are produced by 
a summation of the contributions of all wave types at all 
frequencies arriving at a given receiver location. 

The WS method was shown in Lomax (1994) to reproduce 
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Figure 1. Conceptual diagram showing wave path, wavefront and 
wavelength-dependent weighting function for the wavelength-smoo- 
thing method of Lomax (1994). The bell-shaped weighting function is 
used to smooth the local medium velocity over the wavefront; the 
smoothed velocity is used to determine the wave path. The propagation 
is influenced more strongly by velocity variations near the wave path 
(A) than by those far away (B) relative to the wavelength 1. 

many finite-frequency wave phenomena, but was not given a 
formal theoretical justification. Here, we present a theoretical 
development that leads to a formulation that is similar to the 
WS method. We consider an acoustic case with velocity 
variation in two dimensions. We assume that locally the wave 
propagation at a single frequency over a small time interval 
can be represented by plane waves at the beginning and at the 
end of the interval. Furthermore, we assume that the plane 
wave at the end of the interval is given by the combination of 
the first (reference) plane wave and the (Born) scattering of 
this wave by velocity variations in the (thin) sheet swept out 
by the reference wave in the (small) time interval. Using this 
construction, we can track the propagation of many 'wave 
paths' from the source at distinct frequencies, and construct a 
broad-band seismogram by combining the results for many 
frequencies for wave paths passing near the receiver location. 
Because the estimation of scattering caused by the velocity 
variation in the thin sheet leads to weighted integrals of 
velocity perturbation which scale with frequency, we refer to 
this algorithm as the wavelength-averaging (WA) method. 

The resulting WA method is applicable only with some 
limitations on the scale-length and geometry of the velocity 
heterogeneity. This new formulation, however, rapidly pro- 
duces useful synthetics for quasi-random models with strong 
velocity variations with scale-lengths larger that the dominant 
wavelength of the source. 

Figure 2. Conceptual diagrams showing significant differences 
between the WS and ray methods. (Top) A ray-theory ray is unper- 
turbed in passing near a velocity anomaly (stippled region), while a 
WS wave path for wavelength R will be deflected by an anomaly which 
is large and close to the wave path relative to 1. (Bottom) A ray- 
theory ray can be strongly scattered by a small velocity anomaly 
(stippled region), while a WS wave path for wavelength I will not be 
deflected by an anomalous region that is small relative to A. 

2 THEORY 

The equation of motion in an isotropic, acoustic medium is 
given by 

where P is pressure, K is incompressibility and p is density. If 
the density p is constant and only the incompressibility K 

varies, then, substituting c(r) = ,,k@& eq. (1) becomes 

a2  P 
= c2(r)VZP. ( 2 )  

Using a Fourier transform P(r, t )  = u(r, o) e-'"' do, we obtain 
the Helmholtz equation 

(3) 

2.1 Solution by perturbation 

Following Snieder & Lomax (1996) and Aki & Richards 
(1980), we write the velocity field as 

c(r) = co + 6c(r), (4) 

0 1996 RAS, GJI 126, 369-381 



where co is a constant ‘reference’ term and 6c(r) a perturbation 
term. Substituting eq. (4) in eq. (3) we get 

Consider a solution of the form 

u(r) = uo(r) + u1(r), ( 6 )  

where uo is a ‘reference’ wavefield which is a solution of eq. (3) 
for the homogeneous medium with constant velocity co, 

and u1 is a ‘scattered wavefield related to the interaction of uo 
with the velocity perturbation 6c(r). Substituting eq. (6 )  into 
eq. ( 5 )  and subtracting eq. (7 )  gives 

If we assume that the product of the amplitude and the 
curvature of the ‘scattered’ wavefield is small relative to that 
of the ‘reference’ wavefield, i.e. 

and that the velocity variation is small relative to the reference 
term, 

6c(r) << co , (10) 

then, neglecting terms in 6c(r) - V2ul(r) and [6c(r)12 we have 

Eq. (11) is an inhomogeneous wave equation which has a 
solution 

where G(ro, r) is the Green’s function for eq. (7) with the 
homogeneous reference medium. This is the Born approxi- 
mation (Hudson & Heritage 1982) for the field u,(ro) produced 
by a single scattering interaction of the reference field uo(r) 
with the velocity perturbation 6c(r). 

The Green’s function for outgoing waves in a 2-D geometry 
is (Morse & Feshbach 1953) 

where r = d(z - z0)’ + (x  - xo)2  and Hhl’(wr/co) = Jo(wr/co) + 
iX,(or/co). Choosing plane waves travelling in the z-direction 
for the reference field, 

uo(r) = A o  exp(io(z - zo)/co) ,  (14) 

and substituting eq. (13), eq. (12)  becomes 
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H&’)(wr/c0)Sc(r) exp(iw(z - zo)/co) dx 

2.2 Thin-slab, local plane-wave approximation 

To construct a propagation algorithm for narrow-band paths 
at frequency o from the preceding theory, we consider the 
geometry shown in Fig. 3, where all velocity perturbations 
6c(r) = c(r) - co are contained within a thin slab zo - Az < z < zo. 
In this construction, 6c(r,) = 0 since co = c(ro) is taken as a 
(local ) reference velocity. We approximate the field impinging 
on the slab in the neighbourhood of (xo, zo - Az) by a plane- 
wave reference field uo(r) = A,  exp(iw(z - zo)/co); the orien- 
tation of this reference field uo(r) determines the orientation of 
the x,z coordinate system. A scattered field ul(r) due to the 
interaction of uo(r) with the velocity perturbation 6c(r) in the 
thin slab is given by eq. (15). We now assume that the total 
field uo(r) + ul(r) in the neighbourhood of ro can be approxi- 
mated by a new plane wave u’(r), with modified amplitude, 
phase and direction relative to uo(r). This assumption is 
justified because choosing 6c(ro) = 0 and Az small relative to 
the wavelength ensures that the scattered field ul(r) will be 
small relative to uo(r). However, it is possible that for some 
parts of the narrow-band wavefield this basic assumption will 
not be accurate; this may occur, for example, where the wave 
paths touch a caustic of the narrow-band wavefield. 

To apply this approximation, we consider a general plane 
wave u’(r) propagating in the (nz ,  An,)-direction away from 
the slab with amplitude A‘ and phase shift Ap as an approxi- 
mation to the total outgoing field at r = (x, z )  in the vicinity 
of ro = (xo, zo):  

u’(r) =A‘  exp(i{w[n,(z - zo) + An& - xo)]/co + Acp} ), (16) 

where A’, Anx and Ap are independent of r. In this notation 
we anticipate that A’ - A, Anx - 0 and Ap - 0. Equating the 

f. 

zo- Az zo 
Figure 3. Construction for wavelength-averaging approximation 
showing a thin region of velocity variation 6c(r), incident plane wave 
uo, and plane-wave approximation to the scattered wavefield u’. The 
x, z coordinate system is determined by the propagation direction of u,,. 
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I \ sum of the reference and scattered fields to u’(r), 

uo(r) + ul(r) = u‘(r), ( 17) 

and substituting eq. (14), (15) and (16), we arrive at 

iAooz ’0 

2c; s zo-Az 
A, exp(iw(z - zo)/c0) - - 

Ht)(wr(x’ ,  z’)/co)6c(x’, 2’) exp(iw(z’ - zo)/co) dx‘ dz‘ I 
= A’ exp(i{w[n,(z - z,) + An,(x - xo)]/co + Ap} ). (18) 

We can choose Az small and write &,f(z)  dz -f(zo)Az, and 
eq. ( 18) evaluated at z = zo becomes 

= A’ exp(i[k,An,(x - xo) + Ap]), (19) 

where we have substituted k, = w/co. Finally, separating the 
real and imaginary terms in this expression and substituting 
the first-order Taylor expansion of the exponential on the 
right-hand side, we obtain 

A , - - - -  iAok’Az ?” Trn  J,(k,r(x’,  zo))6c(x’,  z,)  dx’ 

-A’(  1 + ikoAn,(x - xo) + iAp) . (20) 

The integrals in this equation have the form of weighted 
averages of velocity perturbation 6c along the x-axis. 

2.3 
change 

To find an estimate for the amplitude change A’/Ao we take 
the real part of eq. (20) and substitute rlz=zo = x’ - xo = t, 
which gives, at x = xo, 

k, 

Amplitude change, apparent velocity and direction 

m 

(A‘/Ao)(ko, ro) -  1 + -Az Yo(kot)6c(xo + t, zo) d(ko5) ,  
2co 1, 

(21 1 

where k,5 expresses distance along the x-axis in radians. This 
is an expression for a wavelength-dependent amplitude change 

To find an estimate for the phase change Ap we take the 
imaginary part of eq. (20), put A’/Ao = 1 + O(Az) and substi- 
tute Y I , = , ~  = x’ - xo = t, which gives, at x = x,, 

(.4’/Ao)(b ro).  

m 

(22) 
k0 Ap- -- Jo(ko5)6c(xo + t, zo) & a t ) .  2co Az I, 

We can express this phase shift as an apparent velocity T by 
writing 

exp(i[wAz/c, + Ap]) = exp(iwAz/c), 

which gives 

( 2 3 )  

=c0(1-*) koAz ’ 

for Ap << 1. Substituting from eq. (22) for ha, we obtain 
m 

?(k,, ro) - co + 1 J ~ ~ ( k ~ t ~ c ( x ~  + t, zo) d ( k t ) ,  ( 2 5 )  
2 -m 

which is an expression for a wavelength-dependent, apparent 
velocity ?(ko, ro). 

To find an estimate for the change in direction An, we 
differentiate the imaginary part of eq. (20) with respect to x, 
and writing ~ 1 , = , ~  = x - x, = 5 we get, at x = x,, 

(26) 
where k,( express distance along the x-axis in radians. This is 
an expression for a wavelength-dependent direction change 
An,(ko, ro). We show later that eqs (25) and (26) are equivalent 
to the equation of kinematic ray tracing for a medium with 
velocity F. 

3 N U M E R I C A L  I M P L E M E N T A T I O N  

The construction of a numerical propagation algorithm from 
eqs (21 ), (25) and (26) requires replacing the averaging integrals 
from -co to co over k o t  with sums over a finite interval. In 
general there will be a truncation error associated with such a 
replacement. Here we will construct the finite sums so that 
the error is minimal for: (1 ) a constant-velocity medium, and 
(2)  velocity perturbations only within the finite interval of the 
summation over k,5. The first case is accounted for by choosing 
the velocity at ro = (xo, zo)  for the reference velocity co, i.e. 
co = c(xo, zo). With this choice, 6c(r) is everywhere zero in a 
constant-velocity medium, and consequently ? = co, An, = 0 
and A’/Ao = 1. The second case is accounted for if we apply 
no normalization to the truncated sums. Note, however, 
that there is in general still a truncation error, for example 
in the case of velocity variation outside the finite interval of 
summation. 

For the apparent velocity, we substitute 8 = k o t  and 
x(8) = xo + 8/ko in eq. (25) to get 

C(k0,  ro) - co + 5 -m Jo(e)sc(x(e) ,  zo) d e .  (27) 

Note that 8 expresses a phase delay in radians, that 81271 gives 
distance in wavelengths, and that x(8) is dependent on ko.  We 
truncate the integral in eq. (27) at f Omax and convert it to a 
sum over 2M + 1 terms, giving 

Iw 

where 
1 m = M  
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A0 = 0,,/M, and 0, = mA0. In this construction we have 
made the assumption that &(x(0), zo) is slowly varying on any 
interval 0, - A012 I 0 I 0, + so that it does not need to 
be included inside the integral in eq. (30). This condition restricts 
the velocity perturbations to be smooth on a scale-length 
of AO/ko. 

Similarly, for the change in direction Anx we obtain 

from eq. (26). Approximating a f /axo by 

. f (xn  + Ao/kn) - . f(xn - AQ/kn) 
2A0/ko 

choosing Az = coAt where At is the (small) time-step used for 
calculation, we get 

x [S(k,, XO + A0/ko, ~ 0 )  - S(k0, XO - AB/ko, z o ) ] .  

(32) 
For the change in amplitude A’/Ao we substitute 0 = koc 

and x(0) = xo + O/ko in eq. (21) to arrive at 

We truncate the integral at f Om,,, which gives 

ko 
2CO 

A’/Ao - 1 + - Az?(k0, ro) ,  (34) 

(35) 

(36) 

Finally, choosing Az = cnAt we get 

kn A’/Ao - 1 + - Ats’(k,, ro) . 
2 (37)  

The weighting functions developed above, w(0,) and w’(0,), 
are significantly different in form from the weighting function 
used in the wavelength-smoothing formulation in Lomax 
(1994). The weighting function developed by trial and error in 
the earlier work has the form of a Gaussian bell curve and is 
real and positive (Fig. 4). The broad and smooth character of 
this function leads to a stable ‘averaging’ of the medium 
properties, but gives no direct amplitude information. The new 
functions developed here are oscillatory and they form a real 
and imaginary pair (Fig. 4). The real and imaginary parts 
relate to the wave-path kinematics and amplitude variation, 
respectively. However, the relatively narrow, positivenegative 
oscillations in these functions lead to some instability in rapidly 
varying structures. For example, the interaction between posi- 
tive and negative lobes of w(0,) and a sub-lobe-sized velocity 
anomaly can lead to an oscillation between nearby wave paths. 

The frequency-independent weighting functions w(0,) and 
~ ’ ( 0 , )  depend on two parameters, Om,, and M .  As 0,,, is 
increased, the weighting function is widened and includes more 
oscillations. This will bring more distant velocity perturbations 
and corresponding scattering effects into the propagation, but, 
because the plane-wave approximation will not be valid far 
from the wave path, choosing Omax very large will not necessarily 
improve the overall quality of the resulting wavefield esti- 
mation. Also, as Om,, is increased, M must also be increased 
to maintain the precision of the calculation. Here, we choose 
Omax - 2.5 wavelengths, and we choose M - 30 so that there 
are several weighting points for each lobe of the weighting 
function (Fig. 4). 

If the scale-length of the velocity variation &(r) is much 
greater than the size of the lobes in the WA weighting functions 
w(0,) and ~ ‘ ( 0 , )  (cf. Fig.4), then the averaging integrals 
evaluate to nearly zero. Conversely, the largest contribution 
from these (approximate) functions will occur if the velocity 
variation occurs on a scale-length similar to or less than the 

C I  I I 1- 

W27c (wavelengths) 
-2.00 - 1 .oo 0.00 1 .oo 2.00 

Figure 4. Real, w(O), and imaginary, w’(O), parts of the WA weighting function derived here and the weighting function from Lomax ( 1994) for 
WS plotted as a function of distance in wavelengths along the wavefront from the observation point ro = (x,,, zo). The relative amplitude scaling of 
the WA and WS weighting functions is not significant. 
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Figure 5. Velocity model and finite-difference wavefield for a smooth, 'quasi-random' velocity field and narrow-band source function. The velocity 
structure is obtained by low-pass filtering a random, normally distributed set of velocity values on a 512 x 512 point grid. The source function has 
the form u( t )  = A exp( -(2nt/a&)2) cos(2nt/To), where To = 50 s and a = 5. Locations of synthetic seismograms are indicated by triangles. 

dominant wavelength of the signal. Since we assumed in eqs 
(9) and (10) that the scattered field is small relative to the 
reference field, and since the strength of the scattered field is 
related to the contribution of the averaging integrals, there is 
an indication that the velocity variation must be smooth on 
the scale of a wavelength. This is similar to, but perhaps less 
severe than, the restrictions for geometrical optics, where the 
parameters of the medium and the wave should be smooth on 
a scale-length similar to the width of the Fresnel volume 
(Kravtsov & Orlov 1993). Other factors, such as the validity 
of the plane-wave, thin-sheet construction shown in Fig. 3 and 
the selection of truncation parameters for converting the 

averaging integrals to sums, will also affect the accuracy of 
the results. 

3.1 Relation with kinematic ray tracing 
It can be shown that eq.(25) for the wavelength-dependent 
velocity 2 and eq. (26) for the change in direction Anx together 
are equivalent to the equations for ray paths in a medium with 
local velocity C. Consider the equation of kinematic ray tracing 
(Aki & Richards 1980), 
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where s is distance along the ray, c is velocity and r is the 
location in space. Putting drlds = ii for the unit vector along 
a ray, and V = ii dlds + VI, where VL is the component of 
gradient normal to 8, eq. (38) becomes 

d 1  I d  d 1 
ds c 
-( -) ii + - c -ii ds = -( ds -) c ri + V I  (i) , 
- = c v , ( f ) = - r v , c .  dii 1 
ds 

paths for a medium with local velocity C. Conversely, this 
result implies that inferences of velocity structure using ray 
theory and finite-frequency data can at best only recover an 
‘averaged velocity structure related to C. 

(39) 
3.2 Construction of seismograms 

Eq. (26) for the WA direction change can be rewritten, using 
eq. (X), 

-Az a? 
A n x - - -  

cg ax ’  

and since, in terms of ray-centred coordinates, we move our 
wave location a distance As = ?At = ?Az/co in one time-step, 
eq. (41) becomes, in the limit of An,/As -+ dn,/ds, 

dn, 1 a? 
ds ? d x ’  
- = - - -  

which is equivalent to eq. (40). Hence, in a medium with a 
local velocity c, the WA method produces finite-frequency 
wave paths which are identical to the (infinite frequency) ray 

To construct a synthetic seismogram for receiver j ,  eqs (28) 
and (31) are applied repeatedly at small time increments to 
trace many wave paths at various take-off angles from a point 
source. An amplitude change at each time-step is given by 
eq. (34). The coordinates x and z in these equations are defined 
by the wave-path orientation and will change at each time- 
step. A different set of wave paths is generated for each of a 
number of centre frequencies fn which cover the band of 
interest. Arrival times t j , ,  and total amplitude change Aj,, /Ao 
for receiver j and frequency n are interpolated from the wave 
paths that pass closest to the location of the receiver. 
Additionally, the amplitude is multiplied by a factor g j  for 
2-D (114) or 3-D (l/R) geometrical spreading, where R is 
the distance from the source to the receiver, and the amplitude 
can be adjusted to reflect a source radiation pattern. 

The response at a given station for each arrival at centre 
frequency f ,  is formed by summing into a time series s,, at 

112 - 

3 56 - 
z --. 
2 0  

d 
I 
u 

-56 

-112 

600 600 1000 1200 1400 1600 1600 2000 2200 

Distance (Ian) 

Figure 6. Narrow-band source, synthetic FD seismograms (thin lines) and WA seismograms (thick lines) for the ‘quasi-random’ model and receiver 
locations shown in Fig. 5. 

112- , 

56 - 
0 -. 4 

3 0  

d 
I 
u 

-56 

-112 

600 800 1000 1200 1400 1600 1600 2000 2200 

Distance (krn) 

Figure 7. Broad-band source (To = 50 s, a = 2.5) .  synthetic FD seismograms (thin lines) and WA seismograms (thick lines) for the ‘quasi-random’ 
model and receiver locations shown in Fig. 5. 
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arrival time tj .”, a narrow-band filtered delta function 6, which 
is scaled by the amplitude change Aj,,/Ao and geometrical 
spreading g j :  

(43 1 

The narrow-band delta function 6, is formed by Gaussian 
filtering a delta function at centre frequency f,. 

A broad-band time series s( t )  is constructed by summing 
the narrow-band time series s, for each frequency: 

(44) d t )  = c s,( t ,  f” ) . 
n 

The time series s ( t )  approximates the response at a given 
station to an impulsive source within the frequency band used 
for the wavelength-averaging wave-path calculations. This 
band-limited, impulse response time series can be convolved 
with a source time function to produce a synthetic seismogram. 

This procedure differs from the original formulation of 
Lomax (1994) in that here the amplitude is estimated from a 
combination of geometrical spreading gj due to sourcereceiver 
offset, and the cumulative amplitude change Aj,,/Ao given by 
the application of eq. (37) at each time-step. Previously, the 
amplitude was estimated from the separation of wave paths 
near the receiver relative to their separation near the source; 
this estimate was subject to instability if the separation between 
adjacent wave paths was small. 

4 NUMERICAL EXAMPLES 

Through comparison with finite-difference seismograms, we 
show that the theory developed above gives useful results for 
models with velocity variations that are smooth on the scale 
of a wavelength, but not necessarily small in magnitude. We 
examine two types of model, one with random and relatively 
smooth velocity variations, referred to here as a ‘quasi-random’ 
model, and the other with relatively extensive regions of nearly 
constant velocity separated by relatively strong gradients in 
velocity, referred to here as a ‘deterministic’ model. A better 
match of the WA to the finite-difference seismograms is 
obtained for ‘quasi-random’ than for ‘deterministic’ velocity 
variations. 

4.1 Finite-difference method 

We use a finite-difference (FD) algorithm to solve the equation 
of motion in an isotropic, acoustic medium (eq. 1) for constant 
density on a 2-D grid. This algorithm is of second order in 
time and fourth order in space, with transmitting boundary 
conditions. For the WA calculation, the velocity outside the 
grid is set equal to the mean velocity within the grid. In general 
the WA method is up to an order of magnitude faster than the 
FD method for the same problem, and the WA method requires 
insignificant memory above that needed for storage of the 
velocity model. 

4.2 Smooth quasi-random models 

We first compare the finite-difference and WS results for a 
narrow-band point source (To = 50 s) in a quasi-random model 
(Gaussian) which is smooth on length scales smaller than a 
wavelength, but which has a large velocity variation of k20  
per cent. Fig. ( 5 )  shows the velocity model and the wave 
propagation for the finite-difference simulation. Fig. (6)  shows 
finite-difference and WA seismograms for the locations shown 
in Fig. ( 5 ) .  There is a good overall match between the WA 
and FD seismograms in phase and amplitude for first- and 
later-arriving energy. The phase delay and amplitude increase 
at about A - 1300 km and the second-arrival branch at 
900 < A < 1600 km are significant features of this simulation 
that are reproduced in the WA calculation. The greatest 
mismatch in waveforms occurs in regions of wave focusing 
(A - 800, 1400 km) and interference (A - 1200,1500,2100 km). 
Given that the WA calculation is about an order of magnitude 
faster than the FD calculation, these results indicate that the 
WA calculation gives a useful estimate of the wavefield for this 
model geometry. 

Fig. (7 )  shows FD and WA synthetics for the velocity model 
and receiver locations shown in Fig. (5) with a broad-band 
point source. Again the overall match in phase and amplitude 
is very good, although there is significant mismatch in the 
regions of wave interference at about A - 1100 and 1500 km. 
Also, there is a poor match to the longer-period signal between 
the first- and later-arriving energy (i.e. at A < 1000 km and in 
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Figure 9. Simple ray-theory synthetic seismograms (thick lines) and FD seismograms (thin lines) for the ‘quasi-random’ model and receiver 
locations shown in Fig. 5. 
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Figure 10. Velocity model and finite-difference wavefield for a 'deterministic', low-velocity disc, velocity field and narrow-band source function. 
The source fiinction has the form u( r )  = A exp( - ( 2 ~ f / o r ~ ) ~ )  cos(27ct&), where To = 50 s and or = 5. Locations of synthetic seismograms are 
indicated by triangles. 

the range 1600 < A < 1900 km). This mismatch may indicate 
that the velocity variation in the model varies on too small a 
scale-length for the longest periods in the simulation, and 
may indicate the presence of a wave phenomenon, such as 
diffraction, that is not well modelled by the WA algorithm. 
The comparison at longest periods may also be affected by the 
difference in the treatments of the boundary of the grid in the 
WA and FD algorithms. 

In Fig. (8)  we show some of the WA wave paths for periods 
of 50 and 200 s for the quasi-random model. The wave paths 
at 50 s are similar to ray-theory ray paths for this model, but 
are slightly smoother due to the averaging of the medium in 

the WA method. The WA wave paths for longer periods (cf. 
Fig. 8b) produce a smoother wavefield, while those at shorter 
periods are nearly identical to the ray-theory ray paths. 
However, the synthetics obtained from simple ray theory are 
very different from the WA synthetics. In Fig. (9) we show ray 
synthetics using a simple amplitude estimate based on the 
separation between ray paths. These ray synthetics show 
significant amplitude instability at the caustics in the ray field 
near A = 800, 1150,1500 km which do not appear in the WA 
synthetics (Fig. 6). This comparison shows that the WA method 
is not subject to some of the instabilities in critical regions 
that occur with simple ray theory. The WA synthetics also 
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Figure 11. Narrow-band source, synthetic FD seismograms (thin lines) and WA seismograms (thick lines) for the ‘deterministic’ model and receiver 
locations shown in Fig. 10. 

Figure 12. Wavelength-averaging wave paths at = 50 s for the ‘deterministic’ model in Fig. 10 

4.3 Deterministic models 

Next we compare F D  and WA results for the narrow-band 
source (T, = 50 s) in a ‘deterministic’ model composed of a 
low-velocity disc separated from a higher-velocity background 

reproduce the phase of the first-arriving energy better than the 
ray theory synthetics do (cJ Figs 6 and 9), which indicates 
that the WA method may be including some finite-frequency 
wave effects due to the medium properties away from the 
ray path. 
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by a smooth transition over about a wavelength; the velocity 
change between the disc and background is about 10 per cent. 
Fig. (10) shows the velocity model and wave propagation for 
the FD simulation. Fig. (11) shows the FD and WA synthetic 
seismograms for the locations indicated in Fig. (10). The WA 
results follow the form of the FD synthetics, but there is not 
as good a match as with the ‘quasi-random’ model. This is 
most obvious in the region where the wavefield is most 
perturbed by the low-velocity disc (about 1000 < A < 2200 km). 
The WA synthetics show a slight overestimate of amplitude at 
about A - 1300 km and A - 1950 km; the WA wave paths in 
these regions have passed close to and nearly tangent to the 
boundary of the disc (Fig. 12). At locations between these 
regions (about 1400 < A < 1900 km), the WA seismograms 
slightly underestimate the amplitude and do not reproduce the 
complete phase delay of the FD synthetics. In addition, if the 
width of the velocity transition between the disc and back- 
ground is decreased to less than a wavelength, the mismatch 
become more severe. These errors in the phase and amplitude 
estimates may be due to the interaction of the alternating 
positive and negative lobes of the weighting functions with the 
relatively sharp velocity transition in this model which leads 
to oscillating wave paths (Fig. 12). 

Despite these shortcomings, the WA synthetics still show 
significant improvement over synthetics obtained from simple 
ray theory. Fig. (13) shows ray synthetics using the simple 
amplitude estimate based on the separation between ray paths. 
These ray synthetics show significant amplitude instability at 
caustics in the ray field near A = 1400 km and A = 1950 km; 
in these regions the WA synthetics show only a slight over- 
estimate of amplitude (Fig. 11). Also, at the edge of the geo- 
metrical ‘shadow’ of the low-velocity disc (about A = 900 km) 
the ray synthetics show an abrupt change in amplitude that is 
not present in the FD or WA synthetics. 

5 DISCUSSION 

In Lomax ( 1994) a centrally peaked, non-oscillatory weighting 
function was shown to produce useful results in the wavelength- 
smoothing (WS) formulation in models with strong velocity 
differences across sharp boundaries. However, these weighting 
functions were not obtained through a theoretical development. 
In the present work we use a plane-wave construction and 
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single scattering to obtain theoretically derived weighting 
functions which are oscillatory and complex. These functions 
lead to the wavelength-averaging (WA) method, which produces 
useful finite-frequency seismograms in velocity structures with 
strong velocity variation, but which requires some restriction 
on the scale-length and extent of velocity varation relative to 
a wavelength. In particular, the new weighting functions do 
not give as good results in models with extensive regions of 
slowly varying velocity that are separated by strong gradients 
(‘deterministic’ models) as in models with more complex but 
smoothly varying velocity variations (‘quasi-random’ models). 
This limits application of the current formulation of the WA 
method to predominantly quasi-random structures, although 
such models may be useful in many problems, particularly for 
Monte-Carlo-based inversion methods requiring fast forward 
calculations. 

A strength of the original WS algorithm (Lomax 1994) was 
the smoothing of features with small size relative to a wave- 
length, as this led to stability of wave paths at larger periods 
in complicated structures. The oscillating weighting functions 
in the current formulation give generally less stable wave paths, 
particularly if the velocity variation has a scale-length similar 
to the width of the lobes in the oscillating weighting functions. 
This may be understood as a change from tracking mainly the 
forward propagation of the wavefield in the original WS 
formulation, to tracking forward or scattered parts of the 
wavefield, depending on the details of the structure and wave 
path, in the new formulation. Further work is needed to 
investigate whether non-oscillatory weighting functions can be 
obtained from the theoretical development, or, alternatively, if 
the oscillating wave functions can be used in a manner that 
emphasizes the forward propagation of the wavefield and 
produces stable wave paths. This may require re-examination 
of the construction or application of eqs (16) and (17) for 
combining the incident and scattered fields in the thin slab 
approximation (Section 2.2). 
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Figure 13. Simple ray-theory synthetic seimograms (thick lines) and FD seismograms (thin lines) for the ‘deterministic’ model and receiver 
locations shown in Fig. 10. 
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