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INTRODUCTION

Modern seismic networks, either permanent or temporary, can
nowadays easily produce such large volumes of data that man-
ual analysis is not possible. Effective and consistent automatic
procedures for the detection and processing of seismic events
are required to homogeneously process large datasets and to
provide rapid responses in near real time.

One of the first modular components of the automatic
analysis chain is generally a tool for the identification of seismic
phases on the recorded seismic waveforms and the determina-
tion of their onset time, a process known as phase arrival pick-
ing. A variety of procedures for the automatic picking of phase
arrivals have been proposed and successfully implemented
during the last decades; almost all of these methodologies are
based on the analysis of variations in amplitude, frequency,
particle motion, or a combination of these. They typically deal
with the first arriving P phase; less frequently they are able to
detect secondary arrivals.

Most of the picking algorithms can be classified into three
main families: energy methods, autoregressive methods, and
neural network approaches.

The family of the energy methods is probably the larg-
est, and includes the algorithms of Allen (1978) and Baer and
Kradolfer (1987). In this class of algorithms a possible pick is
declared when the ratio between a short-term average (STA) of
the signal (or of a characteristic function of the signal) and its
long-term average (LTA) exceeds a certain threshold parameter
(for this reason they are often also called “STA/LTA” algo-
rithms).

The algorithms of the second class, the autoregressive
methods, determine an optimal pick time after an arrival has
been already detected (e.g:, by an energy method). These algo-
rithms study the variation of the statistical properties of the
signal, trying to find the point in time that best separates the
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signal from the noise (Sleeman and Van Eck 1999; Leonard
and Kennet 1999; Leonard 2000).

In the third family of methodologies, a neural network is
trained to recognize and pick phase arrivals. The analysis can
be performed directly on the signal (Dai and MacBeth 1995,
1997; Zhao and Takano 1999) or on selected signal features
(Gentili and Michelini 2006).

Though in many ways the most basic class of picking algo-
rithms, energy methods are nowadays also the most widely
used. Based on simple mathematical operations, they require
little computation and are therefore suitable for the analysis of
very large datasets and for real-time implementation; further-
more, they need to process few or no samples after the phase
arrival, an essential requirement for time-critical applications,
like earthquake early warning. The main drawback of energy
methods with respect to autoregressive and neural network
approaches is that they demand significant a priori knowledge
of the signal properties to correctly set the operational param-
eters (e.g, triggering thresholds, time-average windows, valida-
tion parameters).

Finding an optimal setup for an energy-based picker can
be difficult. A clear trade-off exists between sensitivity and the
rate of false picks. Also, the influence of each parameter has to
be carefully assessed. This operation is frequently carried out
by a trial-and-error approach. General “recipes” for improved
picking parameters exist (e.g., Pechmann 1998,2006), but they
do not apply equally well to all the circumstances (different fre-
quency bands, microseismicity, teleseismic events).

In this paper we introduce an optimization scheme for
choosing the most appropriate set of parameters for a pick-
ing algorithm by using real picks and data acquired by a spe-
cific seismic network. The optimal model is chosen through
searching in the global parameter space of the maximum of an
objective function that depends on the comparison between
automatic picks and manual picks performed on a dataset rep-
resentative for a seismic network. The idea of optimizing the
parameters of an automatic picker through a global optimi-
zation method was first introduced by Olivieri ez /. (2007).
Here we further develop the methodology by: (1) defining an
advanced objective function that integrates different metrics in
the comparison of automatic and reference manual picks, and
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(2) using seismic noise alongside earthquake recordings in the
optimization process.

We show applications to two STA/LTA algorithms:
the Allen (1978) picker and the new FilterPicker algorithm
(Lomax ez 2/. 2012, this issue).

ENERGY-BASED PHASE PICKING

In the energy-based class of algorithms, at each sample, the
current value of the signal, or of a characteristic function (CF)
of the signal, is compared with the value that can be predicted
from the analysis of the previous samples. If the ratio between
the current value and the predicted one is greater than a certain
threshold, then a possible trigger is declared. Generally the cur-
rent and the predicted values are respectively obtained through
a short-term average (STA) and a long-term average (LTA) of
the signal or of the CF. Many algorithms require extra valida-
tion on the declared trigger to discriminate true phase arriv-
als from noise spikes and to improve the time estimation of
the arrival (Allen 1978; Baer and Kradolfer 1987; Ruud and
Husebye 1992; Eatle and Shearer 1994; Lomax ez al. 2012, this
issue).

One of the first and most widely used methods for auto-
matic picking is the algorithm developed by Allen (1978,
1982). The method is based on comparison between the STA
and the LTA of a characteristic function of the signal. The
characteristic function is based on a combination of the signal
and its time derivative at successive samples; this makes the
algorithm sensitive to both the amplitude and the frequency
of the signal. The STA and LTA are continuously calculated
in two consecutive moving time windows: a short-time win-
dow (STA) that is sensitive to seismic events, and the long-time
window (LTA), which provides information about the tempo-
ral amplitude variation of noise in the signal. When the STA/
LTA ratio exceeds a preset value, a possible trigger is declared.
At this point the algorithm performs several analyses on the
signal to distinguish between the “true” triggers associated to
earthquake arrival phases and the triggers related to the pres-
ence of seismic noise. In the first case the triggers are accepted,
while in the second case they are rejected and declared to be
“noise.” A trigger is only accepted as a seismic phase if some
constraints applied to the durations and amplitudes of peaks,
the number of zero crossing of the signal, and the end of event,
are verified. Several parameters control these extra checks, and
they play an important role in the correct declaration of picks
and in avoiding excessive triggering during acquisition of a
noisy signal that may contain gaps and spikes.

The FilterPicker algorithm is thoroughly described in
Lomax ez al. 2012 (this issue). Here we remark that it is a broad-
band phase detector and picker algorithm especially designed
for real-time operations. The algorithm, loosely related to the
Baer-Kradolfer (1987) picker and to the Allen picker (Allen
1978, 1982), is characterized by a small number of critical oper-
ating parameters (five) and is designed to avoid excessive pick-
ing duringlarge events and produce a realistic time uncertainty

on the pick.

OPTIMIZATION METHOD

The determination of optimal picker parameters is based on
the maximization of an objective function defined through a
comparison between automatic and manual picks performed
on real seismic traces. A global search for the optimal param-
eters set in the multidimensional parameter space is carried out
using the genetic algorithm (Holland 1975; Goldberg 1989), a
search technique well adapted for solving nonlinear problems.
For the search for the best parameter set, we assume that a well-
calibrated picker reproduces the same picks as a manual opera-
tor, for recordings of seismic events and ambient seismic noise.

Fitness Function
The definition of the fitness function is critical for any opti-
mization method since it quantifies the quality of a solution.
Given a set of reference traces containing manually picked
events (one manual pick) and ambient seismic noise (no man-
ual pick), we search for the optimal parameter values that sat-
isty three requirements:
1. automatic picks must be as close as possible to manual
picks;
2. excessive triggering during the seismic events must be
avoided;
3. triggering on ambient seismic noise must be limited.
From these conditions, the fitness function used during the
optimization is defined as:

M

) 1
Fitness = T Zgi (1)

i=1

where M is the number of traces, }# is a normalization con-
stant, and g, is a function of the 7th trace defined from the num-
ber of automatic picks N7 and of manual picks, N7 (N} =
0 or 1), in one of the following ways:
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a _m)
gizcxp(_(tz,bext mtz ) J (2)

2(07)

where f; ez 1s the automatic pick closest in time to the manual
pick #7”and ¢ is the associated manual pick uncertainty; P
(Penalty number) is an integer > 1 that represents the num-
ber of admissible automatic picks for traces containing event
recordings.

o if N'>Pand N/”=1:

(=)
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where £, is the kth automatic pick of the ith trace, and #;” is
the corresponding manual pick.
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Following the previous definitions, the value of normalization
constant //in Equation 1 is defined as:

W =025Ny + N ©)

where N is the number of traces without manual picks and
N g is the number of traces with manual picks used during the
optimization. For our inversion, a penalty in fitness function
is introduced only when the picker produces more than P =4
picks in the analyzed trace.

The function g; measures the quality of a set of pick param-
eters on the individual 7th trace. The values that g; can assume
depend on the manual and automatic picks obtained for the
trace using the picker parameters of the considered model. The
minimum and maximum values of g; are respectively 0 and 1,
indicating the worst and best solution quality for the given trace.
If the trace is a recording of an earthquake with a manual pick,
the value of the g; function will be high when the picker gives a
number of picks less than or equal to the number of admissible
automatic picks P and when the best automatic pick approxi-
mates in time the manual pick as suggested by Equations 2 and
3. The value of g; will be zero when, for the given trace, there
is a manual pick but no automatic picks (Equation 4). Finally,
for recordings of ambient seismic noise without manual picks,
the function g; increases when the number of automatic picks
decreases, and it assumes the maximum value of 0.25 when the
number of automatic picks is zero (Equation 5).

TEST CASE

We used the data acquired by the stations of the Irpinia Seismic
Network (ISNet; Weber ez 4/ 2007) to test and validate the
optimization method described above. The network is installed
in the Apennine chain, southern Italy, to study and monitor the
active fault system responsible for the 23 November 1980 Ms
6.9 Campania-Lucania earthquake (lannaccone et a/. 2010).
ISNet covers an area of about 100 x 70 km? and is composed
of 24 stations, each of which is equipped with a strong-motion
accelerometer and with cither a short-period velocimeter or a
broadband seismometer (Figure 1B).

We tested two energy-based algorithms for automatic pick-
ing: the Allen (1978) picker (hereinafter PICK_EW), imple-
mented in the Earthworm real-time seismic software (Johnson
et al. 1995) and the new FilterPicker algorithm (Lomax ez al.
2012, this issue; hereinafter FP).

The optimization is based on a dataset of 105 vertical-com-
ponent velocity traces from ISNet seismometers, composed of
70 traces of local and regional earthquakes (Figure 1D) and
35 traces with recordings of seismic noise. The selected events
reflect the current seismicity of the area, characterized by many
carthquakes of small magnitude (M < 2.5) located inside the
network and a few events having higher magnitude (M, > 4)
located outside the network (Bobbio et. al. 2009). The first P
arrivals have been manually picked, and the pick uncertainty
(see Equations 2 and 3) has been attributed according to the
four different classes described in Table 1.

We performed a preliminary inversion to understand, for
cach automatic picker, how the parameters that regulate the
algorithm are resolved by the fitness function. For PICK_EW,
we found that, for seven of the 18 parameters (see Table 2), the
fitness function is weakly dependent on the parameter value
and the resulting distribution is almost flat. We therefore fixed
them to their default values and focused the subsequent opti-
mization process on the determination of the remaining 11
parameters. In the case of FP we verified that the fitness func-
tion significantly depends on all five parameters (see Table 3).

The search interval for the time constants used in the
calculation of STA and LTA of PICK_EW was fixed at the
whole allowed interval [0;1]. For the other inverted parameters
of PICK_EW and for the five parameters of FP, the scarch
interval has been centered on the default value, with the search
interval ranging between zero and twice this value.

The optimization has been performed by the genetic algo-
rithm technique using a crossover probability of 0.85 and a
variable probability of mutation between 0.0005 and 0.25. In
each generation the size of population has been fixed at 200
for PICK_EW and at 100 for FP, given the different numbers
of parameters to optimize. The scarch is interrupted when the
fitness function becomes stable between one generation and
another. Figure 2 shows the convergence history of the optimi-
zation process for PICK_EW and for FP. In both cases the fit-
ness function monotonically grows with the generation num-
ber, with a rapid increase during the first steps of search and a
weaker growth during the last steps, up to a stable final value.
The convergence of the fitness function is very rapid in the case
of FP, where the maximum of fitness is already obtained after
about 120 generations. In the case of PICK_EW, the conver-
gence is slower and the maximum was obtained after about 650
generations. In both cases the final value of the fitness function
is very similar: 0.69 for PICK_EW and 0.68 for FP. Table 2

TABLE 1
Quality Classes for Manual Picks and Associated Picking
Uncertainty in s.

Class Manual Picking Uncertainty o™
0 o0m<0.05s

1 0.05s<0™<0.1s

2 0.1s<0™m<0.2s

3 0.2s<0™m<0.bs
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A Figure 1. (A) Location of the events selected to validate the optimized sets of parameters and (C) the corresponding magnitude/
distance distribution. (B) ISNet seismic network (dark gray stations are equipped with short-period velocimeter and light gray stations
have a broadband sensor). (D) Magnitude/distance distribution of the event subset used for the parameters optimization.

shows the optimized parameters obtained using PICK_EW
and Table 3 shows the optimized parameters of FP.

Validation of Parameters

We tested and validated the optimized parameters for PICK _
EW and FP on a larger dataset composed of 5,048 traces of
local and regional seismic events (Figures 1A and 1C) and of
948 traces with high seismic noise. All the traces were recorded
by vertical components of ISNet velocimeters during the period
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between December 2007 and December 2009. We compared
the results with those obtained by the PICK_EW picker with
parameters suggested by Pechmann (1998, 2006).

The main part of the selected earthquakes is formed by
local events of small magnitude (M, < 2.5) detected either by
an automatic procedure or by manual operator and located
inside the network. The remaining part is formed by a selec-
tion of regional events with a distance from the network’s
center smaller than 1,000 km and mainly located around the

Volume 83, Number3 May/June 2012



TABLE 2
Earthworm Picker (PICK_EW) Parameters. For a detailed explanation of the various parameters see Mele et al. (2010).
Italics indicate parameters that were not optimized.

Parameter  Short Description Suggested Value  Optimized Value

Itr1 Parameter used to calculate the zero-crossing termination count 3 5.15

MinSmallZC Defines the minimum number of zero-crossings for a valid pick 40 75.35

MinBigZC Defines the minimum number of big zero-crossings for a valid pick 3 3

MinPeakSize Defines the minimum amplitude (digital counts) for a valid pick 20 13.43

MaxMint Maximum interval (in samples) between zero crossings 500 500

i9 Defines the minimum coda length (seconds) for a valid pick 0 0.473

RawDataFilt Filter parameter thatis applied to the raw trace data 0.985 or 0.939 for 0.979

broadband sensor

CharFuncFilt Sets the filter parameter thatis applied in the calculation of the char- 3 0.0162
acteristic function (CF) of the waveform data

StaFilt Filter parameter (time constant) thatis used in the calculation of the 0.4 0.15
short-term average (STA) of CF

LtaFilt Filter parameter (time constant) thatis used in the calculation of the 0.015 0.021
long-term average (LTA) of CF

EventThresh Setsthe STA/LTA event threshold 5 2.34

RmavFilt Filter parameter (time constant) used to calculate the running mean of 0.9961 0.9961
the absolute value of the waveform data

DeadSta Sets the dead station threshold 1200 2056

CodaTerm Sets the normal coda termination threshold (counts) 49.14 49.14

AltCoda Defines the noisy station level at which pick_ew should use the alter- 0.8 0.8
nate coda termination method

PreEvent Defines the alternate coda termination threshold for noisy stations 1.5 1.64

Erefs Used in calculating the increment to be added to the criterion level at 5000 5000

each zero crossing

ClipCount Specifies the maximum absolute amplitude (in counts zero-to-peak) 2048 2048
that can be expected for the channel

TABLE 3
FilterPicker (FP) Parameters
Parameter  Short Description Suggested Value Optimized Value
Tiiter Longest period for a set of filtered signals from the differential signal 300At 0.865s
of the raw broadband input trace
Tiong Time scale used for accumulating time-averaged statistics of the input 500At 12s
raw signal
S Trigger threshold used for event declaration. A trigger is declared 10 9.36
when the summary CF exceeds S,
S, A pick is declared if and when, within a window of predefined time 10 9.21

width, T, after the trigger time, the integral of the summary CF
exceeds the value S, - T,

Time window used for pick validation 20At 0.388s
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A Figure 2. Convergence history of the optimization process: fitness value as a function of the number of generations. Light gray:
optimization of the PICK_EW picker. Black: optimization of the FP picker.

Apennine chain (central and southern Italy) and in southern
Greece (Figure 1A). We manually picked the first arrival for
carthquake traces, and we defined the pick quality according to
the schema in Table 1. The manually picked dataset is composed
of 4,034 short-period (SP) traces (acquired by S13] sensors) and
1,014 broadband (BB) traces (acquired by Trillium 40; CMG-
40T and KS2000EDU sensors). This distribution of data
reflects the availability of BB sensors among the velocimeters of
ISNet (Figure 1B). The noise traces do not have manual picks,
and we introduced them into the dataset to evaluate the correct
behavior of optimized pickers on traces without seismic events.

In the following we will use the labels “PICK_EW_OPT”
and “FP_OPT” to indicate the optimized versions of the two
picking algorithms, while “PICK_EW” will indicate the algo-
rithm used with the parameters suggested by Pechmann (1998,
2006).

On the selected dataset we retrieved 17,679, 13,032, and
13,062 automatic picks for PICK_EW, PICK_EW_OPT, and
FP_OPT, respectively. The distributions of the number of picks
per trace for the three different cases are shown in Figures 3A
and 3B. The distributions give an understanding of how the
optimized pickers meet the conditions imposed for the opti-
mization. Moreover, these distributions help us to quantify
the number of false picks (other phases than the first arrival)
produced by each picker, as these can often confuse associa-
tion algorithms that follow the pickers in an automatic analysis
chain. For the traces with manual picks, the number of traces
having more than four picks (the number of admissible auto-
matic picks) is 530 and 330 for PICK_EW and PICK_EW_
OPT, respectively, and 358 for FP_OPT. Thus, both of the
optimized pickers obtained more than four picks only on 7% of
the dataset containing event recordings. These results are bet-
ter than those obtained by PICK_EW, which obtained more
than four picks on 10% of the traces. For the recordings of
ambient seismic noise, PICK_EW and PICK_EW_OPT pro-
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vided more picks than FP. For this case the number of traces
with more than four picks is 299 (32% of the whole dataset)
and 287 (30%) for PICK_EW and PICK_EW_OPT, respec-
tively, and only 56 (6%) for FP_OPT. Then, the FilterPicker
better respects the conditions imposed for the optimization of
the parameters.

In the following we subdivide the analyzed traces into four
different categories:

1. traces picked manually only (i.e., missed automatic picks),
2. traces picked automatically only (i.e., false automatic
picks),
3. traces picked both manually and automatically (i.e., cor-
rect automatic picks),
4. traces with neither automatic nor manual picks (i.e., noise
traces with no picks).
Only the traces where the time difference between the closest
automatic and manual picks is less than 2 s are encompassed in
the third category. This large time window is needed to fully
explore the tails of the pick-error distributions.

Following this schema, a quantitative analysis of the pick-
ers’ performance is shown in Figure 4. The pie diagrams show
that the optimized parameters used with both the pickers give,
with respect to suggested parameters of PICK_EW, a higher
number of traces picked manually and automatically (category
3) and, as consequence, a lower number of traces picked by
analyst only (category 1). Moreover, FP_OPT, with respect to
PICK_EW_OPT, gives a higher number of traces with neither
automatic nor manual picks (category 4) and a lower number of
traces picked only automatically (category 2). This means that
FP_OPT gives a greater number of correct picks and reduces
the number of false picks.

We analyzed the performance of the pickers on the dif-
ferent types of velocimetric sensors installed in ISNet. The
results, synthesized in Table 4, show the percentage of BB and
SP automatically picked traces in category 3 for the three ana-
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A Figure 4. Quantitative performance of the automatic pickers.

Seismological Research Letters Volume 83, Number3 May/June 2012 547



TABLE 4
Short-period and broadband picked traces (as a
percentage) in category 3 for the PICK_EW, PICK_EW _
OPT, and FP_OPT pickers

Percentage of correctly picked traces
(category 3) for different sensor types

% of automatically % of automatically

Picker picked BB traces  picked SP traces
PICK_EW 59 53
PICK_EW_OPT 74 87
FP_OPT 90 90

lyzed cases. With respect to PICK_EW, the optimized pick-
ers picked correctly a significantly greater number of traces in
both the BB and SP categories, and the FP_OPT performance
is better than that of PICK_EW_OPT, especially for BB data.
PICK_EW_OPT picked a greater number of SP traces than
it did BB, while FP_OPT produced the same results in both

PICK_EW Class0

93% (1153

\

PICK_EW Class1

’

66% (857)

PICK_EW Class2
75% (927)

b

PICK_EW Class3

75% (927)

PICK_EW_OPT Class0

7% (93) 6% (58)
94% (1188 99% (1235

PICK_EW_OPT Class1

44% (446)
10% (130)
90% (1173 95% (1235)

PICK_EW_OPT Class2

19% (233)
81% (1025 89% (1120)
34% (431)

PICK_EW_OPT Class3

29% (358)
25% (314)
78% (968
71% (883

D picker & analyst

categories, as it picked correctly 90% of data. We verified that
the distributions of the residuals computed by PICK_EW,
PICK_EW_OPT and FP_OPT, as compared to those of the
associated manual picks, are very similar for both SP and BB
data. This shows that, for the three different cases, the qual-
ity of automatic picks is independent of the type of sensor. For
this reason, in the following, we will show the results for the
whole dataset, without discriminating between the SP and the
BB subcategories.

The pie diagrams in Figure 5 show the percentage of traces
belonging to category 1 and 3 with respect to the total number
of manually picked traces. The diagrams are organized accord-
ing to the four pick-quality classes of Table 1. We interpret the
pick-quality class as a marker of the signal-to-noise ratio of the
first arriving P wave. For both pickers the number of automatic
picks decreases with the decrease of signal-to-noise ratio. In
all cases the percentages of traces picked by optimized param-
eters is higher than the percentages relative to PICK_EW with
suggested parameters, and these differences appear more pro-
nounced with the decrease of signal-to-noise ratio. This means

FP_OPT Class0

1% (11)

0

FP_OPT Class1

5% (68)

o

FP_OPT Class2

1% (138)

N

FP_OPT Class3

22% (273)

>

. analyst only

A Figure 5. Quantitative performance of the automatic pickers on traces organized by manual picking-quality classes (see Table 1).
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that FP_OPT and PICK_EW_OPT are more able to pick the
first arrival, especially in cases of noisy recordings where the
signal-to-noise ratio of the first arrival is low.

Figure 6 shows the distributions of residuals (manual time
minus automatic time) within each class of picking accuracy.
In all three cases, for each trace the automatic pick that is clos-
est to the manual pick is used for the evaluation of residuals.
The mean value and the standard deviation for each picking
class (reported in figure legends) are in all three cases com-

parable. The dispersion of distributions increases with the
decreasing accuracy of manual picks, as expected. The mean
values of distributions are near zero for the traces with manual
pick in class 0 and 1, while they are greater than zero for the
traces with picks in class 2 and class 3. In these latter cases
the distributions obtained by PICK_EW and by FP_OPT are
not symmetric with respect to the zero value, and they pres-
ent a positive coda indicating delayed picks with respect to the
manual readings.
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Figure 7 shows examples of traces relative to a regional
carthquake (2009/04/06 Aquila, Italy; Mw 6.3; Maercklin ez
al. 2011) and to a local event (2009/05/18 Colliano, southern
Italy; M, 2.5) with manual and automatic picks from PICK _
EW_OPT and FP_OPT. Each trace shows 10 s of signal,
aligned with respect to the manual pick (located for all traces
at 2 s). On each trace the black and gray vertical bars are the
automatic picks by FP_OPT and PICK_EW_OPT, respec-
tively. For the regional event (Figure 7A), FP_OPT tends to
give a multiple of automatic picks after the manually picked
first arrival, probably associated with secondary arrivals. For
this event the differences between automatic and manual picks
are, on average, of the order of a few tenths of a second for the
traces with clear first arrival, while the differences increase for
the more noisy traces or for first arrival with an emergent char-
acter. For the local event (Figure 7B) the results are very similar
for both pickers, and the differences between automatic and
manual picks are of the order of a few hundredths of a second
for all the traces.

Test Using Phase Association

In typical seismic network operations, automatic phase picks
are used to detect and locate seismic events through the asso-
ciation of picks recorded at different stations. The phase asso-
ciation criterion can be as simple as a time coincidence or can
include more advanced checks on the compatibility between
the arrival times at the stations and the possible location of the
source, given the velocity model. This latter approach is gener-
ally more robust, since it prevents random time coincidences of
noise energy from being declared as events. The phase associa-
tion acts as a filter on the picked arrivals, removing all those
arrivals that cannot be explained in terms of a common seismic
source. For example, an automatic picker set to high sensitivity
might produce several spurious picks for noise or later arrivals.
An effective association algorithm can then successfully filter
out these extra picks. For this reason, the performances of an
automatic picker targeted at event detection have to be evalu-
ated in connection with the phase association algorithm.

Here we use Earthworm’s phase association module,
named “binder” (Dietz 2002), which is based on a grid search
for the most likely common hypocenter that explains a set of
arrivals. We test the number of events detected using PICK _
EW and FP and the binder configuration currently opera-
tional at ISNet (Iannaccone ez 4/. 2010). In this configuration
an event can be declared when at least five P-arrival times are
available.

For our test, we created three separate datasets composed
of recordings of events inside the network, events outside the
network, and false events.

The first dataset is composed of the recordings of 301
events that occurred within the ISNet network between
December 2007 and November 2009. We extracted these
from the ISNet bulletin (http://isnet.na.infn.it/cgi-bin/isnet-
events/isnet.cgi), selecting only events with at least six vertical
recordings and with at least five manual picks. Thirty-nine per-
cent of the events in this selected dataset have been manually

detected, since the automatic procedure originally failed due to
non-optimized picking parameters and/or temporary station
failures.

We picked automatically each trace using PICK_EW,
PICK_EW _OPT, and FP_OPT. Then we associated all the
automatically picked arrivals without making any kind of
pick selection, and we detected the events using the binder.
An event is declared automatically detectable only when the
binder associates five or more automatic picks. Using FP_OPT,
we obtained 282 detectable events (corresponding to 94% of
total events); with PICK_EW _OPT the retrieved detectable
events were 265 (84% of total events), and using PICK_EW
we obtained 164 events (55% of total events). We organized all
the events into classes of magnitude using a binning width of
0.6 and we computed, for cach class, the percentage of detected
events; Figure 8A shows the results of this analysis. With
respect to PICK_EW with the suggested parameters, both
the optimized pickers lead to a higher percentage of declared
events in all the magnitude classes. This difference increases
when the local magnitude decreases. All events with magni-
tude greater than 2.5 are detected using both the optimized
pickers, while for the events with magnitudes less than 2.5, the
percentage of detected events obtained by FP_OPT is higher
than that obtained using PICK_EW_OPT. The greatest dif-
ference between the two percentage levels is observed for events
with magnitude between 0.5 and 1.1, with about 90% of events
detected by FP_OPT and about 80% of events detected by
PICK_EW OPT.

The second test uses carthquakes that occurred outside
the ISNet. We selected 104 events with at least six traces and
within 1,000 km from the network center. Sixty-two percent
of these events have been added to the ISNet bulletin from
external sources and have not been originally detected by the
network. On this dataset, FP_OPT obtained 76 detectable
events (corresponding to 73% of total events), PICK_EW_
OPT retrieved 71 detectable events (68% of total events), and
using PICK_EW with suggested parameters we obtained 26
events (25% of the total number of events). Figure 8B shows the
percentage of detectable events organized by magnitude class
using a binning width of 1.2. In this case also, the pickers with
optimized parameters retrieve a higher percentage of declared
events for all the examined magnitudes. The percentage of
detected events obtained by FP_OPT is on average higher
than that obtained using PICK_EW and PICK_EW_OPT;
moreover, using FP_OPT we obtain 100% of detected events
for magnitudes higher or equal to 5.5, while using PICK_EW
and PICK_EW_OPT we obtain the same percentage only for
events of magnitude 6.5.

Finally, we tested the pickers on a dataset of 49 false events
produced by the simultancous occurrence of spurious noise on
channels of different seismic stations. These events have been
detected by the automatic procedures of ISNet during stormy
days with high wind pressure fluctuation between December
2007 and November 2009. Applying PICK_EW using the
suggested parameters we obtained 23 false events (about the

47% of the whole dataset); PICK_EW_OPT retrieves 31 false
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A Figure 7. Example traces and automatic picks for (A) the 2009.04.06 Aquila (Italy) Mw 6.3 and (B) the 2009.05.18 Colliano (southern
Italy) M, 2.5 earthquakes recorded at stations of ISNet. The PICK_EW and FP automatic picks obtained with optimized parameters are
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events (about 63% of the whole dataset) and FP_OPT produces
only 10 false events (about 20% of the whole dataset).

DISCUSSION AND CONCLUSIONS

In this paper we proposed an optimization scheme for improv-
ing the performances of automatic seismic phase pickers by
using real manual picks and data from a specific seismic net-
work. The strategy is based on the comparison between manual
picks and automatic measurement of arrival times retrieved by
automatic picker on a dataset representative of the seismic net-
work. The dataset is composed of signals of seismic events and
traces of seismic noise. The optimal choice of picker parameters
is performed following a fitness function that quantifies the
goodness of a parameter-set in reproducing the manual picks
and not producing picks on traces with only seismic noise. We
used the genetic algorithm optimization technique to search
for the maximum of the fitness function to determine an opti-
mal parameter-set for each automatic picker. The genetic algo-
rithm has been used in many optimization problems, and in
our case has shown itself to be a valid tool for a wide exploration
of a multi-parametric model space and for finding valid models
verified by a posteriori analysis. In this work we have not tested
the performances of other optimization techniques; however,
global optimization techniques such as Monte Carlo or simu-
lated annealing could be casily introduced into the scheme of
optimization as an alternative to the genetic algorithm.

We applied this optimization scheme with the aim of tun-
ing the picker parameters for the picking of high-frequency
first-arrival phases of local and regional events recorded by seis-
mometers at the ISNet network in southern Italy. However, the
procedure is also applicable to far S-wave picking and regional
and teleseismic picking where there may be a lower dominant
frequency of the picked phases.

The analysis is performed using two different pickers: the
classic Allen (1978) picker, as implemented in Earthworm
(PICK_EW), and the new FilterPicker (FP; Lomax ez 4/. 2012,
this issue). In order to test the retrieved best parameter-sets we
performed statistical analysis on the automatic picks obtained
on a dataset of three years of local and regional data acquired
by the network. When compared with standard parameter set-
tings, the tuned pickers produce a higher number of realistic
onsct times. Indeed, more than 70% of the manual picks were
automatically estimated with optimized pickers instead of 46%
produced by the suggested parameters. Moreover, the distribu-
tions of residuals obtained by comparing automatic and man-
ual picks have a large peak around 0 s and standard deviations
comparable to the errors of manual onset time measurements.
Finally, we verified the parameter-set using the automatic
obtained picks as input of the Earthworm phase association
routine. With optimized parameters, we found a number of
correctly detected earthquakes significantly higher than the
number of earthquakes detected using PICK_EW with sug-
gested parameters. The main differences between optimized
and standard parameter settings are observed for events of low
energy having relative low signal-to-noise ratio and emergent

first arrival. For these traces PICK_EW with standard param-
eters is unable to pick enough arrival times to enable them to
be located.

The proposed optimization scheme is also a useful tool in
comparing the performances of different pickers applied to the
same dataset. In our analysis the two pickers with the optimized
parameters generally provided similar performances with some
small differences. FP with respect to PICK_EW provided a
higher number of correct picks, especially when the first arrival
is noisy, and it did not trigger excessively on the traces with seis-
mic noise. This means that FP, compared to PICK_EW, is bet-
ter able to identify local events of small energy, and it produces
fewer declarations of false events.

DATA AND RESOURCES

Seismic data used in this study were collected by ISNet
(Irpinia Seismic Network) managed by AMRA Scarl (Analisi
e Monitoraggio del Rischio Ambientale). The data are available
online at the Web site http://seismnet.na.infn.it; data availabil-
ity is subject to registration. The figures are made by the follow-
ing software packages: Generic Mapping Tools (http://gmt.
soest.hawaii.edu/), Seismic Analysis Code (http://www.iris.
edu/software/sac/), Gnuplot (http://www.gnuplot.info/), and
Ploticus (http://ploticus.sourceforge.net/doc/welcome.html).
Data analysis and processing are made by using the modules
PICK_EW and BINDER_EW of Earthworm (http://folk-
worm.ceri.memphis.edu/ew-doc/). The FP phase detector and
picker is available in the Java program SeisGram2K (http://
alomax.net/seisgram) under the option “Pick->FilterPicker”
and as an Earthworm module; Java and C source for FP are
available at http://alomax.net/FilterPicker/. The optimization
code is available on request from the corresponding author. B
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