Earthquake details (automatic solutions):

Tsunami early warning within 5 minutes...

...and true size of large earthquakes within 10 minutes

1

Anthony Lomax *ALomax Scientific, Mouans-Sartoux, France* Alberto Michelini

0°

Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

1. Tsunami size, seafloor uplift and seismic moment

- 2. Tsunamigenic earthquakes: the $T_d \cdot T_0$, $T_d \cdot T_{50Ex}$ discriminant
- 3. M_{wpd} rapidly gives true size of large earthquakes
- 4. Examples: Tohoku 2011, Mentawai 2010
- 5. Conclusions

30

Tsunami size depends on seafloor uplift

earthquake rupture

→ tsunami

Seafloor uplift not directly related to seismic moment

Seafloor uplift not directly related to seismic moment

Dominant period T_d and apparent duration T_0 , T_{50Ex}

 T_d – dominant period of early P-waves

 T_o – duration of high-frequency P-waves

 T_{50Ex} – early estimate if T_0 exceeds 50s

Dominant period T_d and apparent duration T_0 , T_{50Ex}

tsunami impact measures derived from: NOAA/WDC Historical Tsunami Database

tsunami amplitude measures derived from: NOAA/WDC Historical Tsunami Database

M_{wpd} – rapidly gives true size of large earthquakes

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+0min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+1min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+2min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+3min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+4min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+5min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+6min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+7min

Real-time simulation: *M*_w9.1, Tohoku, Japan 2011 OT+8min

Real-time simulation: *M*_w7.8, Mentawai 2010

off-line simulation of Early-est realtime monitor - early-est.rm.ingv.it

OT+0min

1 Real-time simulation: *M*_w7.8, Mentawai 2010

OT+4min

Real-time simulation: *M*_w7.8, Mentawai 2010

OT+7min

Real-time simulation: Mw7.8, Mentawai 2010

OT+10min

-60°

-30

Tsunami early warning within 5 minutes

Conclusions

We present procedures using real-time seismogram data currently available for most parts of the world to:

1) Estimate within 5 min after an earthquake occurs the potential of the earthquake to generate a significant tsunami

- $T_d \cdot T_{50Ex}$ and $T_d \cdot T_0$ period-duration discriminants,
- give more and earlier information on tsunami impact than $M_w CMT$ or teleseismic T_0 ,
- possibly identifies directly the "tsunami" faulting potential of an earthquake.
- 2) Determine within 10 min after an earthquake occurs an accurate magnitude, M_{wpd} , giving the true size of very large earthquakes
 - extension of M_{wp} to full *P*-wave duration T_0 .

Lomax scientific

3) Provide basic faulting parameters to aid in early tsunami forecast modeling

6

Further information:

early-est.rm.ingv.it early-est.alomax.net

- Lomax, A. and A. Michelini. Tsunami early warning within 5 minutes, PAGEOPH, submitted.
- Lomax, A. and A. Michelini, 2011. Tsunami early warning using earthquake rupture duration and *P*wave dominant-period: the importance of length and depth of faulting, *Geophys. J. Int.*, 185, 283–291, doi: 10.1111/j.1365-246X.2010.04916.x.
- Lomax, A. and A. Michelini, 2009B. Tsunami early warning using earthquake rupture duration, *Geophys. Res. Lett.*, 36, L09306, doi:10.1029/2009GL037223
- Lomax, A. and A. Michelini, 2009A. *M*wpd: A durationamplitude procedure for rapid determination of earthquake magnitude and tsunamigenic potential from P waveforms, *Geophys. J. Int.*, 176, 200–214, doi:10.1111/j.1365-246X.2008.03974.x

This work is supported by the 2007-2009 Dipartimento della Protezione Civile S3 project, INGV institutional funds and the EC NERA Project (n. 262330)

The IRIS DMC and GFZ provided access to waveforms used in this study.

Anthony Lomax

ALomax Scientific, Mouans-Sartoux, France - anthony@alomax.net

Alberto Michelini Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy alberto.michelini@ingv.it

Real-time: *M*_w9.1, Tohoku, Japan 2011 OT+15min

Real-time: *M*_w8.6, Sumatra 2012

OT+5min

Real-time: *M*_w8.6, Sumatra 2012

OT+10min

