A comparative study of robust algorithms for rapid, automatic earthquake location

- V. Pinsky¹, **S. Husen**², A. Lomax³
- (1) Geophysical Institute of Israel (vlad@seis.mni.gov.il),
- (2) Swiss Seismological Service, ETH Zurich, Switzerland
- (stephan.husen@sed.ethz.ch),
- (3) ALomax Scientific, Mouans-Sartoux, France (anthony@alomax.net)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

INTRODUCTION Methodology Data Results

Conclusions

Synthetic example

Realistic station distribution

GAP: 78 deg nobs: 17

synthetic travel times plus two outliers

INTRODUCTION

Methodology

Results

Conclusions

Synthetic example

Relocation using EDT misfit function

GAP: 78 deg nobs: 17

RMS: 0.55 s mislocation: dx=0.1 km, dy=0.1 km

Data

Results

Conclusions

Non-linear Probabilistic Earthquake location (NonLinLoc)

Probability Density Function (PDF) (Tarantola and Valette, 1982)

$$pdf(\mathbf{x}) = f(misfit(\mathbf{x}))$$

L2 misfit function

satisfies all observations

$$pdf(\mathbf{x},t_0) \propto e^{-\frac{1}{2} \sum_{abs_i} Tobs_i(\mathbf{x}) - Tcalc_i(\mathbf{x})]^2}$$

Equal Differential Time (EDT) misfit function

satisfies the most pairs of observations

$$pdf(\mathbf{x}) \propto \sum_{obs_a o s_b} e^{\frac{\{Tobs_a(\mathbf{x}) - Tobs_b(\mathbf{x})\} - [TTcalc_a(\mathbf{x}) - TTcalc_b(\mathbf{x})]^N}{\sigma^2}}$$

coded into NonLinLoc software: <u>www.alomax.net/nlloc</u>

	Introduction	METHODOL	LOGY	Data	Results	Conclusions		
	Network Beamforming (NB) (Pinsky, 2006)					T _k : arrival time TT _k (xyz): predicted travel time σ: empirical scaling factor		
	origin time T_{0k} for station k: $T_{0k} = T_k - TT_k(xyz)$)			
	expressed by means of complex exponents: $exp(iT_{0k}/\sigma) = exp(iT_{0k}/\sigma)$				{i [T _k -T	T _k (X,Y,Z)]/σ}		
	L2 solution of this set of		S(X, Y, Z) = max(IΣ exp (iT _{0k} /σ) I) /N					
	equations.		maximum of the absolute value of the average of complex exponents					
	The use of complex exponents allows easier separation of outliers!							
						MWW		

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Data

Graphical interpretation

NonLinLoc + EDT

Inconsistent pairs of observations form local minimum in the PDF.

Average of a set of radius vectors, which becomes the longest, when the set is the most dense.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DATA

Results

Conclusions

Data set for comparison

127 earthquakes 2004 - 2007

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Different sets of arrival times

TRIGGER

Based on simple STA/LTA

AUTOPICK

Based on Baer & Kradolfer (1992) automatic picker

MANUPICK

Manually reviewed by experienced analyst

Testing procedure

- Locate events using different sets of arrival times (AUTOPICK & TRIGGER) and each locator (NonLinLoc & NB).
- Compare locations (mislocation in epicenter) against reference locations computed using MANUPICK and NonLinLoc-EDT.
- All locations are computed using the same minimum 1D model velocity model.

EDT vs L2 (AUTOPICK)

Difference relative to locations with MANUPICK and EDT misfit function

Data

L2: 38% of events within 4 km radius of reference location

EDT: 83% of events within 4 km radius of reference location

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

NB vs NonLinLoc (AUTOPICK)

Difference relative to locations with MANUPICK and EDT misfit function

NB vs NonLinLoc (TRIGGER)

Difference relative to locations with MANUPICK and EDT misfit function

Conclusions

- The Equal Differential Time misfit function (EDT) and Network Beamforming (NB) can provide stable epicenter locations in the presence of outliers in the data.
- Arrival times of better quality (AUTOPICK) yield more reliable results then arrival times of lower quality (TRIGGER).
- Rapid earthquake locations, as needed in early earthquake warning, can be improved using robust earthquake location techniques such as NonLinLoc-EDT or NB.

Data

Results

Outlook

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

