

Anthony Lomax ALomax Scientific, Mouans-Sartoux, France

Alberto Michelini Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Andrew Curtis

ECOSSE, Grant Institute of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

Outline:

Introduction

- 1. Phase picking, phase association and event detection
- 2. Earthquake location at local, regional and teleseismic distances: Probabilistic, global-search earthquake location
- 3. New perspectives in observatory analysis: Illustrative examples of global-search earthquake location

More information: http://alomax.net/science.html

Anthony Lomax - ALomax Scientific, Mouans-Sartoux, France - anthony@alomax.net, www.alomax.net

Introduction – Earthquake location

Anthony Lomax ALomax Scientific, Mouans-Sartoux, France

Alberto Michelini Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Andrew Curtis ECOSSE, Grant Institute of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

Earthquake Location

Earthquake Location

Earthquake Location

1. Phase picking, phase association and event detection

Anthony Lomax ALomax Scientific, Mouans-Sartoux, France

Alberto Michelini Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Andrew Curtis ECOSSE, Grant Institute of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

1. Phase picking, phase association and event detection

Phase picking

Phase picking – theory

Phase picking – Automatic pickers - algorithm

e.g. Allen, R.V. (1982) - Baer, M., and U. Kradolfer (1987) - Sleeman, R., and T. van Eck (1999) - etc...

Phase picking – Automatic pickers – noisy signal

Phase picking – 3-component broadband – polarisation

e.g. Magotra, N., N.Ahmed, and E.Chael (1987) - Cichowicz, A. (1993) - Oye, V. and W.L. Ellsworth (2005) - etc...

Phase picking – 3-component broadband

e.g. Magotra, N., N.Ahmed, and E.Chael (1987) - Cichowicz, A. (1993) - Oye, V. and W.L. Ellsworth (2005) - etc...

Phase picking - Arrival times and pick uncertainty

e.g. Tarantola, A. (1987) - refs in Lomax, A., A. Michelini, A. Curtis (2009) - etc...

1. Phase picking, phase association and event detection

e.g. Johnson, C. E., A. Lindh, B. Hirshorn (1994) - Earthworm - SeisComP3 - etc...

Difficulties for picking, association, location

- False picks (noise, signal problems, ...)
- Small, pre-cursor events (foreshocks, noise, ...)
- Simultaneous events

•

Poor network geometry or station coverage around event

e.g. refs in Lomax, A., A. Michelini, A. Curtis (2009)

2. Earthquake Location at local, regional and teleseismic distances: Probabilistic, global-search earthquake location

Anthony Lomax ALomax Scientific, Mouans-Sartoux, France

Alberto Michelini Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Andrew Curtis ECOSSE, Grant Institute of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

basic least-squares location

basic least-squares location – local/regional – Cartesian coordinates

e.g. Lahr, J.C. (1999) - Tarantola, A. (1987) - refs in Lomax, A., A. Michelini, A. Curtis (2009) - etc...

basic least-squares location – teleseismic – spherical coordinates

Probabilistic event location

Arrival times and pick uncertainty

e.g. Tarantola, A. (1987) - refs in Lomax, A., A. Michelini, A. Curtis (2009) - etc...

Probabilistic, global-search event location

١.

Probability Density Function:
$$pdf(\mathbf{x}) = k e^{-f(\text{misfit}(\mathbf{x})/\sigma)}$$

Probabilistic, global-search event location

PDF image multiple minima efficiency

Iterative-linearized location

Global-Search methods: Grid search

Global-Search methods: Directed walk

Search methods: Importance sampling

2. Probabilistic, global-search earthquake location The Oct-tree importance sampling method

Lomax, A., A. Michelini, A. Curtis (2009)

Sub-division of highest probability cell:

Oct-Tree sampling procedure

f) many subdivisions

Example: PDF with two maxima

Real-Time Earthquake Location

2. Probabilistic, global-search earthquake location The EDT Probability Density Function

Lomax, A., A. Michelini, A. Curtis (2009)

RMS/L2-norm vs EDT Probability Density Function

RMS/L2-norm

$$pdf(x, t_0) \propto e^{-\frac{1}{2} \sum_{obs_i} \frac{Tobs_i(x) - Tcalc_i(x)}{\sigma^2}}$$

"satisfy all the observations"

EDT (Equal Differential Time)

$$pdf(x) \propto \sum_{obs_{a}, obs_{b}} e^{-\frac{\left[Tobs_{a}(x) - Tobs_{b}(x)\right]}{\sigma^{2}} - \frac{\left[Tcalc_{a}(x) - TTcalc_{b}(x)\right]^{N}}{\sigma^{2}}}$$

"satisfy the most pairs of observations"

independent of origin time

Phase association and event detection \rightarrow EDT

RMS/L2 vs EDT with outlier data

perfect data (6 obs)

3. New perspectives in observatory analysis: Illustrative examples of global-search earthquake location

Anthony Lomax ALomax Scientific, Mouans-Sartoux, France

Alberto Michelini Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Andrew Curtis ECOSSE, Grant Institute of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

Lomax, A., A. Michelini, A. Curtis (2009)

Few available stations

Few available stations (cont)

Stations to one side of the event

P-wave arrival times at 7 stations

Stations far from the event

Incorrect picks and phase id - outlier data: L2-norm

Incorrect picks and phase id - outlier data: EDT

Incorrect velocity model

Station corrections

Original location

Location with corrected times

Real-Time Earthquake Location

3. New perspectives in observatory analysis: Illustrative examples of global-search earthquake location

Evolutionary, early-warning location

RTLoc

Satriano, C., A. Lomax and A. Zollo (2008)

Location Probability

RTLoc

NLLoc

Lomax, et al., 2000

RTLoc

RTLoc

NLLoc

RTLoc

NLLoc

0.2 0.3

0.0 0.1

RTLoc

NLLoc

Real-Time Earthquake Location

3. New perspectives in observatory analysis: Illustrative examples of global-search earthquake location

Real-time display of derived quantities: Tsunami early-warning

Tue Apr 28 11:27:00 UTC 2009

Tue Apr 28 11:28:02 UTC 2009

Tue Apr 28 11:29:06 UTC 2009

Tue Apr 28 11:30:05 UTC 2009

Tue Apr 28 11:31:10 UTC 2009

Tue Apr 28 11:32:10 UTC 2009

Tue Apr 28 11:33:10 UTC 2009

Tue Apr 28 11:34:10 UTC 2009

Tue Apr 28 11:35:11 UTC 2009

Tue Apr 28 11:36:13 UTC 2009

Tue Apr 28 11:37:16 UTC 2009

Tue Apr 28 11:38:16 UTC 2009

Real-Time Earthquake Location

Anthony Lomax ALomax Scientific, Mouans-Sartoux, France

Alberto Michelini Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Andrew Curtis

ECOSSE, Grant Institute of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

References

 Lomax, A., A. Michelini, A. Curtis (2009), Earthquake Location, Nonlinear, in *Complexity In Earthquakes, Tsunamis And Volcanoes And Forecasting And Early Warning Of Their Hazards*, W.H.K. Lee, ed., Encyclopedia of Complexity and System Science, Springer, Heidelberg. EarthqkLoc-Direct-Search_v2.0.pdf

Allen, R.V. (1978), Automatic earthquake recognition and timing from single traces. *Bull. Seism. Soc. Am.*, **68**,1521-1531.

Allen, R.V. (1982), Automatic phase pickers: their present use and future prospects. *Bull. Seism. Soc. Am.*, **72**, S225-S242.

Bai C-Y and Kennett B.L.N. (2000), Automatic phase-picking and identification by full use of a single three-component broadband seismogram, *Bull. Seism. Soc. Am.*, **90**, 187-198.

Baer, M., and U. Kradolfer (1987), An automatic phase picker for local and teleseismic events. *Bull. Seism. Soc. Am.*, **77**, 1437-1445.

Cichowicz, A. (1993), An automatic s phase picker, *Bull. Seism. Soc. Am.*, **83**, 180-189.

Greenhalgh, S., I. M. Mason and B. Zhou (2005), An analytical treatment of single station triaxial seismic direction finding, *J. Geophys. Eng.*, **2**, 8–15, doi:10.1088/1742-2132/2/1/002.

Hendrick, N. and S. Hearn (1999), Polarisation Analysis: What is it? Why do you need it? How do you do it?, *Explor. Geophys.*, **30**, 177-190.

.Johnson, C. E., A. Lindh, B. Hirshorn (1994), Robust regional phase association, U.S. Geol. Surv. Open-File Rept. 94-621.

Leonard, M. (2000), Comparison of Manual and Automatic Onset Time Picking, *Bull. Seism. Soc. Am.*, **90**, 1384-1390.

Lahr, J.C. (1984), Description of the weighted regression and quality estimation used in the earthquake location program hypoellipse, U.S. *Geological Survey Open-File Report* 84-766, http://jclahr.com/science/software/hypoellipse/of84-766.pdf.

Lahr, J.C. (1999), HYPOELLIPSE: A Computer Program for Determining Local Earthquake Hypocentral Parameters, Magnitude, and First-Motion Pattern (Y2K Compliant Version), U.S. Geological Survey Open-File Report 99-23, http://pubs.usgs.gov/of/1999/ofr-99-0023/.

Lomax, A. (2005), A Reanalysis of the Hypocentral Location and Related Observations for the Great 1906 California Earthquake, *Bull. Seism. Soc. Am.*, **91**, 861-877. Lomax, A.J. and A. Michelini (1988), The use of spherical coordinates in the interpretation of seismograms, *Geophys. J. R. astr. Soc.*, **93**, 405-412.

Magotra, N., N.Ahmed, and E.Chael (1987), Seismic event detection and source location using single station (three-component) data, *Bull. Seism. Soc. Am.*, **77**, 958-971.

Montalbetti, J. F., and E. R. Kanasewich (1970), Enhancement of teleseismic body phases with a polarization filter, *Geophys. J. R. Astr. Soc.* **21**, 119–129.

Nguyen, D. T., R. J. Brown, D. C. Lawton, (1989), Polarization filter for multi-component seismic data, in *CREWES Research Report 1989*, chap. 7, 93-101, http://www.crewes.org/Reports/1989/1989-07.pdf.

Oye, V. and W.L. Ellsworth (2005), Orientation of Three-Component Geophones in the San Andreas Fault Observatory at Depth Pilot Hole, Parkfield, California, *Bull. Seism. Soc. Am.*, **95**, 751–758

Samson, J. C. (1983), The spectral matrix, eigenvalues, and principal components in the analysis of multichannel geophysical data, *Ann. Geophys.* **1**, 115–119.

Samson, J. C., and J. V. Olson (1980), Some comments on the descriptions of the polarization states of waves, *Geophys. J. R. Astr. Soc.* **61**, 115–130.

Satriano, C., A. Lomax and A. Zollo (2008), Real-time evolutionary earthquake location for seismic early warning, *Bull. Seism. Soc. Am.*, **98**, 1482-1494

Schimmel, M. and J. Gallart (2004), Degree of Polarization Filter for Frequency-Dependent Signal Enhancement Through Noise Suppression, *Bull. Seism. Soc. Am.*, **94**, 1016–1035.

Sleeman, R., and T. van Eck (1999), Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings, *Phys. of the Earth and Planet. Int*, **113**, 265-275.

Tarantola, A. (1987), *Inverse problem theory: Methods for data fitting and model parameter estimation*, Elsevier, Amsterdam, 613p.

Tarantola, A. and Valette, B., (1982), Inverse problems = quest for information., *J. Geophys.*, **50**, 159-170.

Vidale, J. E. (1986), Complex polarization analysis of particle motion, *Bull. Seism. Soc. Am.* **76**, 1393–1405.

Withers, M., R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore and J. Trujillo (1998), A comparison of select trigger algorithms for automated global seismic phase and event detection, *Bull. Seism. Soc. Am.*, 88, 95– 106.